
Методика расчета вакуумных систем в компании «Лейфикон Вакуум Сервис» и реализация её в виде бесплатного сервиса <u>leybold.ru/rascam</u>

Расчет вакуумных систем: суть задачи

Под термином расчет вакуумной системы мы понимаем определение откачной характеристики данной вакуумной камеры с помощью данной вакуумной системы.

Задача возникает:

- При проектировании новых систем
- При модернизации существующих систем
- При анализе существующих вакуумных системы с целью оптимизации

Расчет вакуумных систем: суть задачи

Причины разработки собственной методики:

- Невозможность получения достоверных результатов с помощью упрощенных моделей расчета
- Применение готовых ПО не дало достоверных результатов
- Необходимость в наличии простого сервиса, позволяющего получать достоверные результаты

Расчет вакуумных систем: расчетная модель

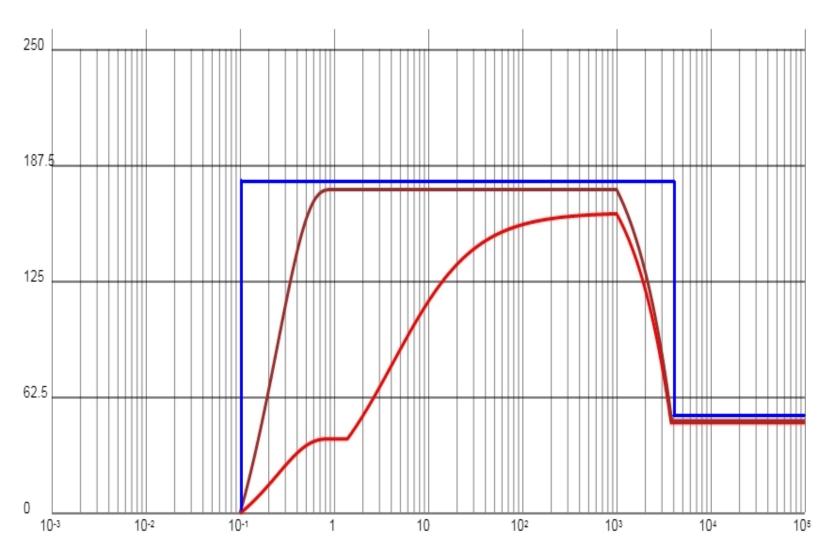
Процесс откачки в вакуумной камере:

$$-V\cdot rac{dp}{dt}=Q$$
, где $Q=S(p)\cdot p-Q_{
m yr}-Q_{
m дегK}(t)-Q_{
m дегY}(t)$

 $Q_{\scriptscriptstyle ext{VT}}$ – поток натекания в вакуумную систему,

 $Q_{{
m дегK}}(t)$ - поток дегазации материала камеры,

 $Q_{\mathrm{дег}\mathrm{y}}(t)$ – поток дегазации материала уплотнений,


$$-V \cdot \frac{dp}{dt} = S(p) \cdot p - Q_{yT} - Q_{derK}(t) - Q_{derY}(t)$$

Расчет вакуумных систем: расчетная модель

Различные варианты в отличие от принятых допущений:

	Допущения	Уравнение	Область применения	Не учитывается (пренебрегаю тся)
1	S=const, $Q_{\rm yr} + Q_{\rm derK}(t) + Q_{\rm derY}(t) = 0$	$p(t) = p_{\text{atm}} \cdot e^{-\frac{S \cdot t}{V}}$	Процесс откачки в областях низкого вакуума, с малым натеканием	проводимостьхар-ка насосанатеканияДегазация
2	S=const, $\begin{aligned} Q_{\text{yT}} + Q_{\text{derK}}(t) + Q_{\text{derY}}(t) \\ &= const \end{aligned}$	$p(t) = e^{-\frac{S \cdot t}{V}} \cdot \left(p_{\text{атм}} - p_{\text{пред}} - \frac{Q}{S} \right)$	Процесс откачки в областях низкого и среднего вакуума	проводимостьхар-ка насоса
3	$Q_{\rm yr} + Q_{\rm derK} + Q_{\rm dery} = const$	$-V \cdot rac{dp}{dt} = S(p) \cdot p - Q_{ ext{yt}} - Q_{ ext{derK}} \ - Q_{ ext{derY}}$	Процесс откачки в областях низкого и среднего вакуума	- зависимость дегазации от времени
4	S=const	$-V \cdot rac{dp}{dt} = S \cdot p - Q_{ ext{yr}} - Q_{ ext{derK}}(t) \ - Q_{ ext{derY}}(t)$	Процесс откачки в области высокого вакуума	- хар-ка насоса

Расчет вакуумных систем

Кривая скорости откачки для S=const

Кривая скорости откачки вакуумной системы

Кривая эф-ой скорости откачки

Расчет вакуумных систем: реализация

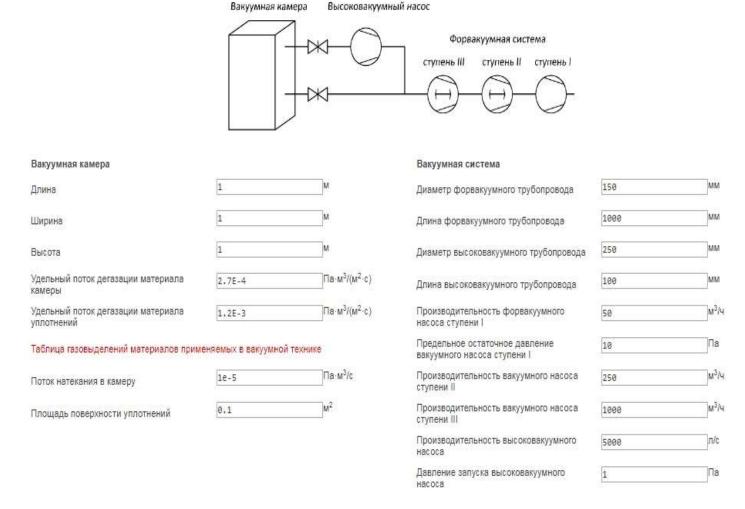
Для форвакуумной откачки была выбрана модель:

Q=const,
$$-V \cdot \frac{dp}{dt} = S(p) \cdot p - Q_{yT} - Q_{дегK} - Q_{дегY}$$

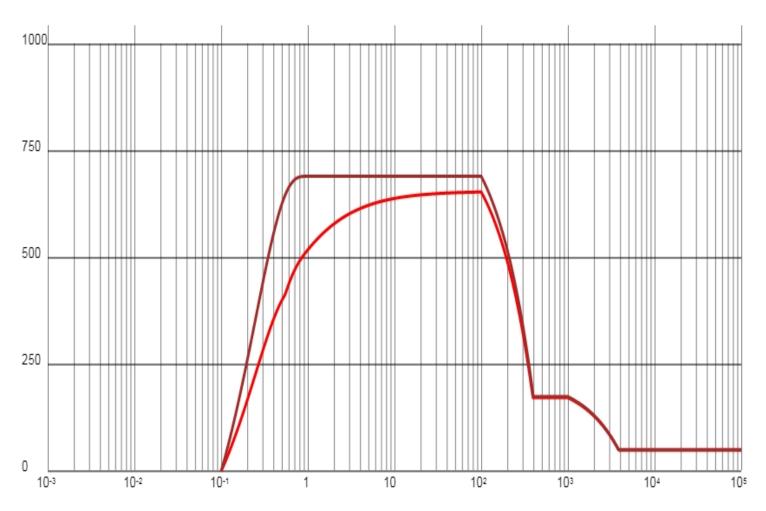
Для высоковакуумной откачки была выбрана модель:

S=const,
$$-V \cdot \frac{dp}{dt} = S \cdot p - Q_{yT} - Q_{ZEFK}(t) - Q_{ZEFY}(t)$$

Допущения

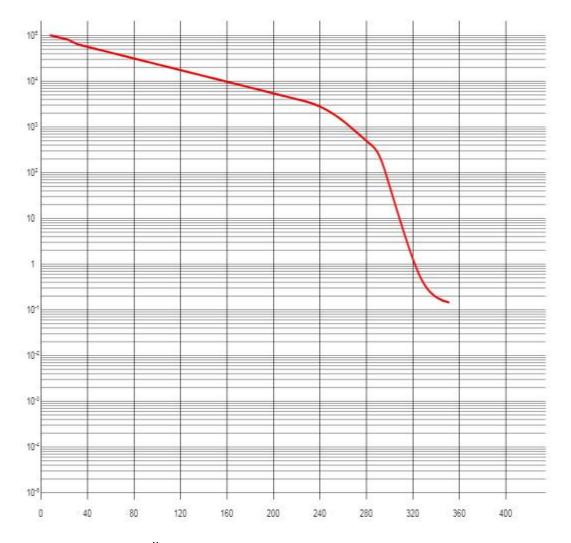

Форвакуумная откачка:

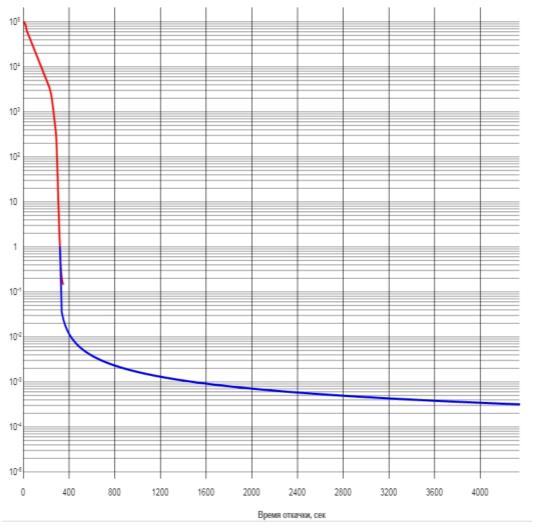
- Упрощены кривые скорости откачки
- Не учитывается объем трубопроводов
- Не учитывается влияние водяных паров на характеристику вакуумных насосов


Высоковакуумная откачка:

- Упрощены кривые скорости откачки
- Не учитывается селективность откачки
- Не учитывается объем трубопроводов
- Не учитывается процесс выхода насоса на номинальную скорость откачки

Ввод параметров: leybold.ru/rascam


Кривая скорости откачки вакуумной системы


Кривая скорости откачки вакуумной системы

Кривая эффективной скорости откачки вакуумной системы

Кривая форвакуумной откачки вакуумной камеры

Кривая откачки вакуумной камеры

Расчет вакуумных систем: недостатки

- Расчет не является абсолютно истинным так как не представляется возможным учесть все факторы, влияющие на процесс откачки (например, влажность воздуха, степень чистоты внутренних поверхностей, шероховатость трубопроводов
- Получение достоверных результатов (относительно реальной системы) напрямую зависит от введения истинных данных (не всегда их можно оценить)
- Основная задача расчета получение достоверных результатов с вводом минимального количества параметров
- В ходе расчета принимается ряд необходимых допущений
- Расчет не позволяет рассчитывать вакуумные камеры с наличием влаги
- Используется упрощенная кривая скорости откачки системы (форвакуумной и высоковакуумной)
- Вакуумная камера только прямоугольной формы
- Для продуктивного применения необходимо понимание основ вакуумной техники

Лейфикон Вакуум Сервис, стенд A207