Miscellaneous to oil sealed and dry compressing Pump Systems

Checklist for Inquiries

To Leybold GmbH
Dept. Systems
Fax: +49 (0)221/347-31206 e-Mail:
vacuum.solutions@leybold.com

From company:	
Name/Department:	
Phone:	Date:
Fax:	First page of:

MAKE USE OF OUR KNOW-HOW!

Simply fax the completed checklist to us. Our engineers will design a pump system which exactly matches your requirements. You will receive an offer shortly.

1.
 In what kind of application will the pump system be used (e.g. drying, distillation)?

\qquad

2.

Is the process run
continuously in batches:
3.

What is the volume of the vacuum chamber?
\qquad m^{3}
4. What pump-down times are required/desired?
\qquad $\min ^{3} \times h^{-1}$

5What operating pressures are planned?
mbar

6temperature?

- when installed in the building:
min. \qquad ${ }^{\circ} \mathrm{C} /$ max. \qquad ${ }^{\circ} \mathrm{C}$
- when installed out in the open
min. \qquad ${ }^{\circ} \mathrm{C} /$ max. \qquad ${ }^{\circ} \mathrm{C}$

7. How high is the intake
temperature?
\qquad ${ }^{\circ} \mathrm{C}$

What is the composition of the gas which is to be pumped.
Designation:
a)
a) b)
b) \qquad
e)
\longrightarrow
f)

- - Quantity (kg/h or $\mathrm{Nm}^{3} / \mathrm{h}$), traces (\%):
a) \qquad b) \qquad
c) \qquad d) \qquad
e) \qquad f) \qquad

10. In case of materials not commonly listed in the tables please state:
a) Molecular mass \qquad
b) Thermal capacity \qquad
c) Vapor pressure
d) Viscosity
e) Melting point
f) Special characteristics
11. Must explosion hazard regulations be observed?
\square yes no
if yes, which? \qquad
\qquad
12. What kind of electrical supplies are available?
a) Voltage
b) Frequency \qquad
13. What kind of mechanical connection specifications are planned?
a) Length of the intake line
b) Diameter of the intake line

Which cooling media are available (water, brine, etc.)? Which temperature?
\qquad ${ }^{\circ} \mathrm{C}$ $\max . \quad-\quad{ }^{\circ} \mathrm{C}$

