

High Vacuum Pumps

TURBOVAC / TURBOVAC MAG Turbomolecular Pumps

leybold

Contents

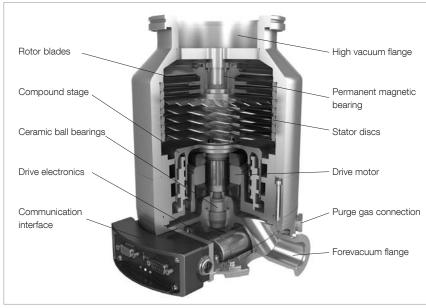
High Vacuum Pumps

Turbomolecular Pumps TURBOVAC / TURBOVAC MAG	6
General	
General to TURBOVAC Pumps	6
Applications for TURBOVAC Pumps	2
Accessories for TURBOVAC Pumps	3
Products	
Turbomolecular Pumps with Hybrid (magnetic/mechanical) Rotor Suspension	
General toTURBOVAC i / iX Pumps	4
with integrated Frequency Converter	22
with integrated Frequency Converter and integrated Vacuum System Controller	22
Special Turbomolecular Pumps	34
Turbomolecular Pumps with Magnetic Rotor Suspension MAG INTEGRA with integrated Frequency Converter with and without Compound Stage	26
with and without compound stage	00
with Compound Stage	50
Accessories	
Electronic Frequency Converters for Turbomolecular Pumps with Magnetic Rotor Suspension	58
Vibration Absorber	32
Flange Heater for CF High Vacuum Flanges	32
Fine Filter	63
Solenoid Venting Valve	63
Power Failure Venting Valve	63
Power Failure Venting Valve, electromagnetically actuated	63
Purge Gas and Venting Valve	64
Gas Filter to G 1/4" for Purge Gas and Venting Valve	64
Accessories for Serial Interfaces RS 232 C and RS 485 C	35
PC-Software LEYASSIST	35
Interface Adaptor for Frequency Converter with RS 232 C/RS 485 C Interface 6	

Miscellaneous

Services		66
----------	--	----

Oil Diffusion Pumps DIP, LEYBOJET, OB		-	. (68
General				
Applications and Accessories for Oil Diffusion Pumps				68
Oil for Diffusion Pumps, for different fields of application				68
Oil for Diffusion Pumps, for different pump types				69
Products				
DIP Pumps, Water-Cooled				72
DIJ Pumps, Water-Cooled				76
Oil Booster OB				80
LEYBOJET 630, Water-Cooled				82
Accessories				
Astrotorus Baffles				84
Temperature dependant Switching Components for Automatic Pump System Control				86
Monitoring Instruments				87
Power Controller				88
Adsorption Traps with Aluminium Oxide Insert				90
Right-Angle Valves, Electropneumatically Operated.				92
Cryo Pumps, Cold Heads and Compressor Units				
COOLVAC / COOLPOWER / COOLPAK		•	- (94
COOLVAC / COOLPOWER / COOLPAK			_ (94
COOLVAC / COOLPOWER / COOLPAK				94
COOLVAC / COOLPOWER / COOLPAK				94 95
COOLVAC / COOLPOWER / COOLPAK	 		•	94 95 96
COOLVAC / COOLPOWER / COOLPAK	 	 		94 95 96 98
COOLVAC / COOLPOWER / COOLPAK	 	· · ·	. 1	94 95 96 98 00
COOLVAC / COOLPOWER / COOLPAK	 	· · ·	. 1	94 95 96 98 00
COOLVAC / COOLPOWER / COOLPAK	 	· · ·	. 1	94 95 96 98 00
COOLVAC / COOLPOWER / COOLPAK General Applications and Accessories Cryo Pumps	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	. 1 . 1 . 1 . 1 . 1 . 1	94 95 98 00 01 01 02 04 08


Cryogenics

General to TURBOVAC Pumps

Turbomolecular vacuum pumps (TUR-BOVAC) are used in applications which require a clean high or ultrahigh vacuum like, for example, in research, development or in industrial fields like the semiconductor industry, analytical instrumentation or coating technology.

Principle of Operation

In principle, the turbomolecular pump is a turbine rapidly revolving in a housing where the rotor stages of the turbine are equipped with a number of rotor blades. Located between the rotating rotor blades are stationary stator disks with blades arranged in the opposite direction. By means of a momentum transfer from the rotating rotor blades to the gas molecules their initially nondirectional thermal motion is changed in to a directional motion from the inlet flange of the pump in the axial direction towards the forevacuum flange. In the molecular flow range (i.e. at pressures below 10^{-3} mbar (0.75×10^{-3} Torr)) the mean free path of the gas molecules is larger then the spacing between the rotor and the stator blades (typically a few tenths of a millimetre). Correspondingly the molecules chiefly collide with the optically dense rotor blades, resulting in a highly efficient pumping action. In the laminar flow range (i.e. at pressures over 10^{-1} mbar (0.75 x 10^{-1} Torr)) the effect of the rotor is impaired by frequent collisions between molecules themselves. For this reason, a turbomolecular pump is not capable of pumping gases at atmospheric pressure.

Sectional drawing of a turbomolecular pump (TURBOVAC i)

Rotor Bearing

Leybold offers different rotor bearing systems. A purely classic mechanical type of rotor bearing (TURBOVAC) or a magnetic rotor bearing (TURBOVAC MAG) and also a hybrid bearing (TURBOVAC i / iX) where the bearing on the forevacuum side is a ceramic ball bearing lubricated for life and where the bearing on the high vacuum side is implemented by way of a non-wearing magnetic bear ing. Typical for all these types of bearing is that they do not require any lubricating oil which under circumstances like standstill of the pump might diffuse back into the vacuum chamber due to the lack of any pumping action.

Drive Electronics/Control Unit

Driving and monitoring the turbomolecular pump requires an electronic frequency converter (inverter). The frequency converter delivers the driving voltage and the output frequency for the motor and also automatically monitors the system. Optimum running up of the pump rotor is attained by a steadily increasing voltage and frequency feed. After attaining the nominal speed, the start-up current is reduced in a controlled manner to the level necessary for normal operation. The frequency converter and the motor of the TURBOVAC have been designed for a minimal drop of speed even at high intake pressures. This ensures the highest possible gas throughput also in the transition range from molecular to viscous flow

Depending on the given system and installation conditions, the control unit may be supplemented by a comprehensive range of optional accessories facilitating easy integration within existing installations.

Forevacuum Pump

Since turbomolecular pumps are not capable of compressing directly against atmospheric pressure their operation will always require a sufficiently rated forevacuum pump. For the classic rotor arrangement with rotor blades, generally two-stage rotary vane pumps (TRIVAC) will be suitable. In some cases also single-stage rotary vane vacuum pumps (SOGEVAC BI) or scroll vacuum pumps (SCROLLVAC).In the case of the wide range variant where the rotor is equipped with an additional compression stage (compound stage) also diaphragm vacuum pumps (DIVAC) may be used.

Characteristic Quantities

Pumping speed (volume flow rate) The pumping speed "S" is the conveyed volume flow through the intake opening of the pump. It is dependent on the type of gas so that for this reason the nominal pumping speed, i.e. the maximum attainable pumping speed of the pump is commonly stated for air, respectively nitrogen. In the field of high vacuum engineering it is common to state the pumping speed in the unit of measurement [I/s]. The pumping speed is a nonlinear function of the inlet pressure $S = S(p_1)$.

Gas throughput

Gas throughput "Q", unit of measurement [mbar x l/s] is linked to the pumping speed through the inlet pressure. $Q = Q(p_1) = p_1 \times S(p_1).$

Compression

Compression "K" is defined as the ratio between the pressure on the forevacuum side of the turbomolecular pump and the pressure on the high vacuum side.

$$K = K(p_{i}) = p_{i}/p_{i}$$

Compression is dependent on the type of gas.

Ultimate pressure (base pressure)

The ultimate pressure "p_{ult}" of a turbomolecular pump which can be baked out is defined through the ratio between forevacuum pressure and compression ratio which is attained in a test chamber 48 hours after a 24-hour bake-out (degassing) of the measurement arrangement.

$$p_{ult} = p_{FV}/K_0$$
.

The maximum attainable ultimate pressure depends among other things on the cleanness of the apparatus, the type of forevacuum pump used, the types of seals used for the high vacuum flange and the bake-out conditions.

TURBOVAC Product Line

The TURBOVAC pumps are turbomolecular pumps with mechanical rotor suspension which are used in the pressure range from 10⁻¹ mbar (0.75 x 10⁻¹ Torr) to 10⁻¹⁰ mbar (0.75 x 10⁻¹⁰ Torr) Pumping speeds for air vary from 35 l/s (inlet flange diameter = 40 mm(1.57 in.)) to 1,150 l/s (inlet flange diameter = 250 mm (9.84 in.)).Besides a variant with extremely reliable ceramic ball bearings on the forevacuum and the high vacuum side, Leybold also offers a line of turbomolecular pumps equipped with hybrid bearings which on the forevacuum side are equipped with a ceramic ball bearing and on the high vacuum side with a permanent magnetic bearing (TURBO-VAC i line).

Owing to their compact design and ease of operation, these pump lines are

TURBOVAC MAG Product Line

The TURBOVAC MAG pumps are turbomolecular pumps with magnetic rotor suspension which are used in the pressure range from 10⁻¹ mbar (0.75 x 10⁻¹ Torr) to 10⁻¹⁰ mbar (0.75 x 10⁻¹⁰ Torr). Pumping speeds for air vary from 300 l/s (inlet flange diameter = 100 mm (3.94 in.)) to 2,200 l/s (inlet flange diameter = 250 mm (12.6 in.)). The TURBOVAC MAG pumps are mostly installed in areas that require noise-free and vibration-free operation, have to be free of hydrocarbons and require long maintenance intervals. Electron beam microscopy, analytical technology and R & D are also important areas of application for these pumps.

used in all high vacuum and ultrahigh vacuum fields of application. In particular, the TURBOVAC pumps are running very successfully in mass spectrometers, in CD, DVD and hard disk production units, in the manufacture of large area optical coatings, in non-corrosive semiconductor production processes and in laboratories as well as research institutes

The most important advantages of the TURBOVAC product line are:

- Oil-free pumps for the generation of clean high and ultra-high vacuum conditions
- Highest performance in any orientation
- Highest degree of operating reliability
- Easy to operate
- Compact design

TURBOVAC (T) 350 iX

The most important advantages of the TURBOVAC MAG product line are:

- Hydrocarbon-free pumps for the generation of clean high and ultrahigh vacuum conditions
- High performance in any orientation
- High degree of operating reliability
- Extremely low vibration
- Almost maintenance-free

TURBOVAC MAG 2200 iPL

Use of Turbomolecular Pumps in Analytical Instruments

All modern analytical methods for gas, liquid and plasma analysis - like for example GC-MS, LC-MS and ICP-MS rely on mass spectrometers and for this reason require adequate high vacuum conditions. Also in electron microscopes and many surface analysis instruments the production of a high vacuum is essential. In over 90% of all high vacuum applications, the turbomolecular pump has been found to be ideal. Thanks to the hydrocarbon-free vacuum, most simple operation, compact design and almost maintenancefree operation it has in most cases displaced above all the diffusion pump.

On the basis of decades of experience and in cooperation with research facilities and the manufacturers of analytical instruments, Leybold has continually optimized its products.

TURBOVAC MAG W 600 iP

Through the TURBOVAC wide range series, a further improvement has been attained, making available to users in the area of analytical engineering highly flexible and reliable products.

Owing to the modular concept the user may adapt the vacuum system precisely to his requirements. The components can be integrated perfectly and thus find the most cost-effective system configuration. Through the introduction of the TURBOVAC multi inlet series, Leybold has, based on special customer requirements, achieved a major step ahead for analytical instruments.

Two or more analysis chambers can be pumped down simultaneously by a single multi-inlet pump. These pumps have been tailored for pumping speed and gas throughput in order to attain a higher detection sensitivity of analytical systems, for a smaller footprint and an increased sample throughput, for example. The benefits for the customers are the extreme compactness of the vacuum systems without sacrificing performance density, simple installation, stable vacuum connections and, compared to the use of discrete individual pumps, significantly lower investment costs for the entire system. The cartridge solution, moreover, allows for an innovative and cost-effective design of the customer's system and during servicing a simple replacement of the active unit without involved assembly work and leak searching.

Cartridge benefits, which convince

- Higher effective pumping speed
- No losses in conductance
- Compact vacuum system
- Easy pump replacement without having to disassemble the highly sensitive mass spectrometer chambers

The benefits for the customers are reflected by the efficiency of the analytical instruments:

- Increase in detection sensitivity
- Smaller analytical systems
- Increase in sample throughput
- Reduction of system costs
- Lower maintenance costs

In combination with backing pumps like the SOGEVAC, TRIVAC or SCROLLVAC, Leybold is able to offer the best vacuum system optimized for all major applications in the area of analytical instrumentation.

TURBOVAC i Multi Inlet

Use of Turbomolecular Pumps in the Area of Coating Systems

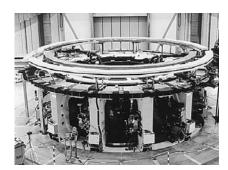
Coating of optical and magnetic storage media, optical components as well as architectural glass requires high vacuum conditions. This is the only way to ensure that the formed layers will be uniform and adhere to the substrate.

The way in which the vacuum is generated has a significant impact on the quality of the coating. By pumping the vacuum chamber down to pressures in the range of 10^{-6} mbar (0.75 x 10^{-6} Torr), interfering gas and water molecules are removed from the processing chamber. In the case of sputtering the coating process is run in the pressure range between 10^{-3} and 10^{-2} mbar (0.75 x 10^{-3} and 0.75 x 10^{-2} Torr), and in the case of evaporation coating, pressures below 10^{-4} mbar (0.75 x 10^{-4} Torr) are utilized.

The turbomolecular pump meets all requirements of the customers as to a hydrocarbon-free vacuum, very simple operation, compact design and almost maintenance-free operation in an almost ideal manner. The range of pumps from Leybold includes pumps with flange diameters ranging from 40 mm to 250 mm

(1.57 in. to 9.84 in.) nominal width.

Thus the right pump is available for each application, be it coating of data memories (CD, DVD, hard discs), coat ing of tools and coating of precision lenses in the area of optical components, displays or architectural glass.



Coating of architectural glas

Use of turbomolecular pumps in research and development

In many applications in which new ideas shall be transformed into technical processes, vacuum technology is a basic requirement for being able to implement these processes at all.

In the field of research and development, all types of turbomolecular pumps from Leybold are being used. Since the application requirements differ widely, for example are being used. Since the application requirements differ widely, for example between university basic research, industrial development, in research and in large laboratories, the right component or the matching system can be put together from the comprehensive range of equipment being offered.

Nuclear fusion technology

Notes

Applications for TURBOVAC Pumps

					/	\.+
				1 AF	<u>9</u>	\$9``
				350	01950	
		/	A P		, met	c011
		_0`		T' M		No It
6 ⁵	J.	2	R S	\mathcal{O}	, ⁵⁰	300
Pumps	R ^D	R ^D ,	PB N	S ^r ,	S.	\$ \$
Applications			(1)25 (1)25	NO NO NO	01/201/201/201/201/201/201/201/201/201/2	2011 1301 1301 1301 1301
Analytical Instruments						
Leak detectors						
Mass spectrometers						
Gas chromatography (GC-MS)						
Liquid chromatography (LC-MS)						
Quadrupol time of flight (Q-TOF)						
Matrix assisted laser		-	-	-		-
desorption time of flight (MALDI-TOF)						
Inductively coupled plasma mass spectrometry (ICP-MS)						
Electron beam microscopy						
Coating						
Data storage / optical						
Data storage / magnetic						
Flat panel displays						
Optical coating						
Large area coating						
Decorative coating						
Metallization						
Wear protection						
Metallurgy						
R & D (Research and Development)						
Surface analysis						
UHV / XHV systems						
Particle accelerators						
Fusion experiments						
Space simulation						
Semiconductor Processes						
Load locks and transfer chambers						
PECVD						
PVD						-
Ion implantation	 					

Accessories for TURBOVAC Pumps

		JRBOV	AC 901		/	O 100 0050 0040 0040 0040 N	07
				,	C C C C	201	1301 1301 1301 1301 1301
				CONTROLOGIC	13. 25	DIJ A	T
					F./		100,10
6					C. M	0140	3001
Pumps	/	RBON	020	680 ¹	CN .	C N	0, C
	^	<u>)</u> /~	<u>~</u> ~	2 4	4	r 4	1 1
Accessories							
Integrated Frequency Converter							
External Frequency Converter and Power Supply							
24VDC Display Unit TURBO.CONTROL i							
Pump control unit with Power Supply TURBO.CONTROL 300							
Power Supply							
Mounting Kit							
Inlet screen / Splinter guard							
Vibration absorber							
Air cooling unit							
Water cooling kit							
Flange heaters for CF flanges							
Venting valve							
Purge gas valve							
Purge gas and venting valve							
Power failure venting valve							
Electronic brake module							
Relay box							
Accessories for serial interfaces							
Control Software for TURBOVAC							

General to TURBOVAC i / iX Pumps

Turbomolecular Pumps with Hybrid Rotor Suspension (mechanical/magnetic)

TURBOVAC i, iX / T i, T iX

The TURBOVAC i / iX series is a modular line of turbomolecular vacuum pumps. With the integrated drive electronics (frequency converter) it forms a single unit.

In the development of the TURBOVAC i / iX special emphasis was placed on the maximum attainable pump performance in consideration of its footprint. The specially developed rotor/stator design, upon request with an additional compression stage, guarantees excellent performance data as to pumping speed, gas throughput and compression especially also for light gases. In all pumps of this line, the bearing consists of a non-wearing permanent magnetic bearing on the high vacuum side and an oil-free ceramic ball bearing which is lubricated for life on the forevacuum side. For this reason, the usually required standard maintenance involving an oil change is no longer necessary. Thec eramic ball bearing is replaceable on-site, should this be required.

The pumps are equipped as standard with a venting and purge gas facility for directly connecting a venting valve, purge gas valve or purge gas throttle to the pump.

Overview of Variants

Electronics Variants

All pumps are equipped with integrated drive electronics with a 24 V/48 V power supply which controls the amount of drive power and which monitors all pump functions.

The individual requirements with regard to communication interfaces and the functional scope of the driving options for accessory components can be covered through a number of different electronics variants. Owing to the many possible combinations (electronics, pump stage design, housing and the range of accessories) the TURBOVAC i / iX can be flexibly adapted to the specific application in each case.

For example, in comparison with the TURBOVAC i, the TURBOVAC iX is equipped with an integrated vacuum system control unit which drives accessory components like vacuum gauge, valves, fans and forevacuum pumps. Moreover, numerous optionally available communication interfaces facilitate easy integration within your installation. The pump stage design (rotor, stator and Holweck stage) can be selected specifically in consideration of the respective process requirements and offers variants for highest possible gas throughput, pumping speed and/or compression in single or multi-chamber systems. Equally comprehensive is the range of housing and flange variants being offered where the vacuum connections can be adapted flexibly to the on-site installation conditions. The comprehensive range of accessories completes the TURBOVAC i / iX line thereby extending the fields of application for these pumps.

Advantages to the User

- High pumping performance from a compact size
- Cost-effective price-to-performance ratio
- Highly reliable, maintenance-free bearing concept without oil lubrication
- Owing to the overall modular concept, individually adaptable to the respective conditions and requirements
- Variety of housings and flange options
- Easy and easily adaptable installation, any mounting position
- Easy process integration due to the numerous interfacing options
- Flexible accessory options (power supply, cooling, heating, venting, installation etc.)

Left: TURBOVAC i with standard interface Centre: **TURBOVAC i** with Anybus interface extension Right: **TURBOVAC iX** with integrated vacuum system control unit and Anybus interface extension

Electronics Variants

TURBOVAC i (Standard)

Cost-effective solution equipped with basic functions and interfaces.

- Internal 24/48 V DC frequency converter
- Status LEDs
- Accessory connection for up to 2 controllable accessory components
- User-friendly interfaces (USB, RS 485, 15-pin digital I/O)

TURBOVAC i (Anybus interface extension)

Features like TURBOVAC I, additionally:

 User-friendly interfaces (USB, 15-pin digital I/O) and Anybus interface instead of the RS 485 for further interface options: RS 232, Profibus, Ethernet/IP (further interfaces upon request)

Standard interface USB, RS 485 and 15-pin digital I/O for TURBOVAC i

Anybus interface expansion for TURBOVAC i

Integrated vacuum system control unit of the TURBOVAC iX

TURBOVAC iX (Vacuum system control unit)

With integrated vacuum system control unit and Anybus interface extension.

Features like TURBOVAC i (Anybus interface extension), additionally:

- 3 outputs for controlling vacuum pump accessories
- 1 vacuum gauge head connection for powering and data recording of vacuum gauge heads and application of pressure data for pump system control
- Flexibly programmable software, for customising the configuration of the control connections

Performance Variants

TURBOVAC i, iX

The standard variant for UHV applications and compact pump system solutions. Owing to the additional Holweck compression stage it delivers a high pumping speed and a high compression especially for light gases, and due to its high forevacuum tolerance it is suited for operation in connection with diaphragm or scroll forevacuum pumps.

TURBOVAC T i, T iX

The "T" version with its classic rotor design without additional compression stage is suited for deployment under more stringent process conditions and high gas loads. Compared to the standard variant it stands for faster run-up times, increased gas throughput and an improved tolerance with regard to pumping of particle or dust containing media.

TURBOVAC i Multi-Inlet

The variant with a special rotor design and two or more inlets as an efficient and compact vacuum solution for multi-chamber systems. It allows for a high degree of system integration and convinces compared to systems with discreet turbomolecular pumps through its lower weight and smaller footprint as well as an increased reliability of the entire vacuum system through the reliance on fewer components compared to similar systems equipped with discrete turbomolecular pumps.

Housing and Flange Variants

The optimised rotor geometry has been specially adapted to the industrial standard sizes for maximum pump performance. Housings with ISO-K as well as CF flanges are available. Moreover, the standard housings with an additional inlet stage are available upon request.

Flexibility

The forevacuum connection on all pumps is rotatable thereby facilitating flexible installation within existing systems making optimum use of the available space. Moreover, the required amount of installation space may be reduced by a detachable cable connected interface module Multiple inlet stages can be implemented through the **TURBOVAC Multi-Inlet**. Here in addition to the special cartridge solution which facilitates easy replacement in the field, also custom housing and chamber solutions are offered for utmost system integration.

Left: TURBOVAC i with radial forevacuum flange Right: TURBOVAC i with axial forevacuum flange

Accessories for TURBOVAC i, iX / T i, T iX

Power Supply TURBO.POWER integra

- Plug-and-play power supply for fitting underneath the pump, 100-240 V
 - for TURBOVAC (T) 350 i(X) and TURBOVAC (T) 450 i(X) only
- Including short connecting cable to the pump
- Also for benchtop placement (TURBOVAC 90/250/350/450) with optional extension cable (1, 3, 5 m (3.5, 10.5, 17.5 ft))
- Requires a country-specific mains cord (EU, US, UK ...)

24VDC Display Unit TURBO.CONTROL i

- Control and monitoring of a TURBOVAC i/iX pump
- The 24 V/DC operating voltage comes from a plug power supply with round plug (24 V/DC - 1.5A -36W)
- Can be installed in a rack or mounted in a table housing
- Has two communication channels (RS485 & USB) to the pump control and two interfaces for gauges. An ethernet provides the possibility of running a web server for the pump control and monitoring on an external PC and to read logged data via the TURBOCONTROL i.
- Requires a plug-in power supply an standard cable for communication
- The following measuring gauges can be attached: PTR 90, PTR 91 N, TTR 91,

TTR 91 N, TTR101, TTR 101 N

Pump control unit with Power Supply TURBO.CONTROL 300

- Control unit and power supply for rack installation
- With on/off switch for the turbomolecular pump
- Status LEDs and status relays for monitoring the pump
- For remote control via interface
- Requires a connection cable to the pump (1, 3, 5 m (3.5, 10.5, 17.5 ft)) and country-specific mains cord (EU, US, UK ...)

Connecting cables to the pump with bare wire ends of for customer specific power supply units

leybold

Relay Box

The relay box allows you to control via the 24 V DC output on the TURBOVAC i a mains powered electric consumer, like a backing pump, for example. Mains power and consumer are connected using mains power cords, the control voltage is connected through an M 8 connector.

- incl. connection cable with a M 8 plug, 2 m (7.0 ft) long

DC Pump Plug

for adapting the supply voltage by the customer.

- 24/48 V DC-In plug TURBOVAC i

Radial air cooler

for lateral installation on the pump, including connection plug

- Flexible positioning

Axial air cooler

For installation underneath the pump, including connection plug

Water cooling

for flexible installation on the pump (required for degassing the turbomolecular pump)

Heating Collar

for degassing the pump

- Degassing temperature 100 °C (212 °F)
- Requires a country-specific mains cord (EU, US, UK ...)
- With optional relay box and accessory cable, automatic control via the electronics of the TURBOVAC i / iX is possible

Accessory Valves

- Power supply 24 V DC
- G 1/8" inlet (inside thread) and discharge (outside thread) connection
- Including O-ring and connecting cable with M 8 plug for connection to the accessory input on the TURBOVAC i / iX

Venting Valve (for connection the venting connection)

for venting the turbomolecular pump

- The valve is normally closed

Power Failure Venting Valve (for connection the venting connection)

for venting the turbomolecular pump

- The valve is normally open

Purge Gas Throttle

for passively controlling the admitted purge gas quantity

- G 1/8" inlet (inside thread) and discharge (outside thread) connection
- Purge gas throttle 24 sccm

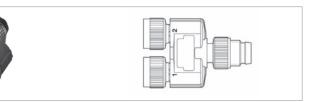
Air Filter

for connection to the valves or throttles

- Prevents contamination and clogging of valves and throttles
- G1/8"

Y-Splitter

 Extends the M 8 accessory connection on the TURBOVAC i by a further connection for parallel driving of two accessory components. Here both accessory components are switched synchronously **Purge Gas Valve** (for connection to the purge gas connection on the turbomo-lecular pump)


for controlling the admitted purge gas quantity

- The valve is closed when no power

Installation and Mounting Accessories

Mounting kit for safe mounting of the pump

The mounting kits include: ISO-K kit (100 und 160): centering rings and clamps ISO-F kit (100 und 160): collar flange, outside ring, bolts and nuts CF kit (100 und 160): 2 copper gaskets, bolts, nuts and washers

Mounting kits (left ISO-KF, centre ISO-F, right CF)

Centering Rings with Splinter Guard (DN 100 and 160 ISO-K/F)

Centering Rings with Inlet Screens (DN 100 and 160 ISO-K/F)

Splinter Guards (DN 100 und 160 CF)

Inlet Screens (DN 100 und 160 CF)

for protecting the pump against ingesting parts.

Inlet screen, 3.2 mm (0.01 ft) mesh Splinter guard, 0.8 mm (0.003 ft) mesh

Note:

For ISO-K/F, both inlet screen and splinter guard have been integrated in the centering ring.

Vibration Absorber (DN 100/160 ISO-K and 100/160 CF)

Prevents any possible vibration transfer from the pump to sensitive instrumentation or apparatus.

Software LEYASSIST *

Software for PC-based communication, control and monitoring of turbomolecular pumps via USB, RS 485 or RS 232 interface with automatic pump detection.

Functions

- Display of vacuum system status
- Trend configuration and report
- Configuring the accessory functions of the TURBOVAC i / iX
- Reading/writing of parameters
- Data logging
- Alarm/warning message logging
- Interface uses USB (with USB cable 2.0, Type A/B, 1.8 m (6.3 ft) long), RS 485 or RS 232 (with dongle)
 - Functions: reading/writing of parameters, control and data acquisition
- Automatic detection of connected Leybold pump type or instrument
- Different languages and with different user access levels are available

* included in delivery of TURBOVAC iX

Ordering Information

Software LEYASSIST for turbomolecular vacuum pumps

Part. No. 230439V01

Products

TURBOVAC with Hybrid Rotor Suspension (mag/mech)

with integrated Frequency Converter TURBOVAC 90 i, 250 i, (T) 350 i and (T) 450 i

TURBOVAC 90 i (left), 250 i (T), 350 i and (T) 450 i (right)

with integrated Frequency Converter and integrated Vacuum System Controller TURBOVAC 90 iX, 250 iX, (T) 350 iX and (T) 450 iX

TURBOVAC 90 iX (left), 250 iX, (T) 350 iX and (T) 450 iX (right)

Typical Applications

- Analytical technologies / Research & Development
 - Mass spectrometers
 - Electron microscopes
 - Surface analysis
 - X-ray-analysis
 - Particle accelerators and synchrotons
 - Laboratory coating systems
 - MBE (Molecular Beam Epitaxy)
 - UHV systems
- Life Sciences
- Proton therapy
- Gamma sterilisation
- Production of high quality implants
- Industrial and Coating applications
 - PVD- Physical Vapour deposition
 - Optical coatings
 - CD/DVD/Blu-Ray Disc production
- Thin film technologies, photovoltaics
- Load locks, transfer chambers, handling systems
- Electron beam welders
- Insulation vacuum and leak detection

Technical Features

TURBOVAC i

- Integrated electronic drive unit with 24/48 V DC supply
- Best in class pumping speed and compression especially for light gases
- Vacuum port design flexibility
- Installation in any orientation
- Superior reliability due to innovative pump and bearing design
- The only maintenance free hybrid mechanical TMP
 - no need for oil changes
- On-site maintenance possibility (bearing exchange) to reduce service costs and time
- Widest range of interface options (USB, RS 485 and 15 pin digital I/O as standard)
- Optimized size/performance ratio on 100 and 160 flanges

TURBOVAC iX

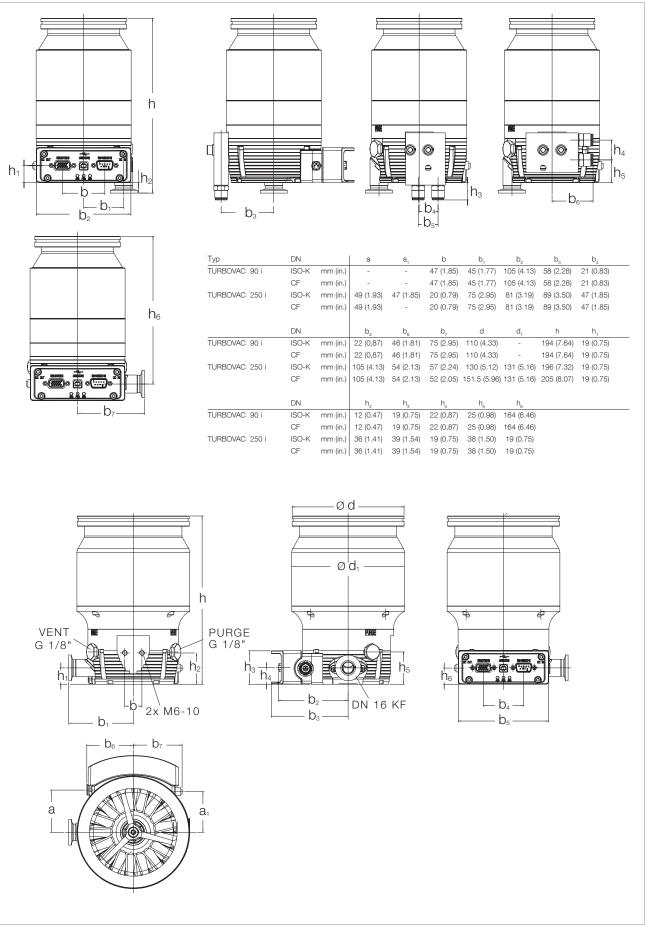
- Integrated vacuum system controller with flexible interfaces and several accessory ports for control of cooling units, valves, gauges, forevacuum pumps etc.
- Flexible accessory program options for easy plug & play
- Flexibility to match different process and application requirements

TURBOVAC T i, T iX

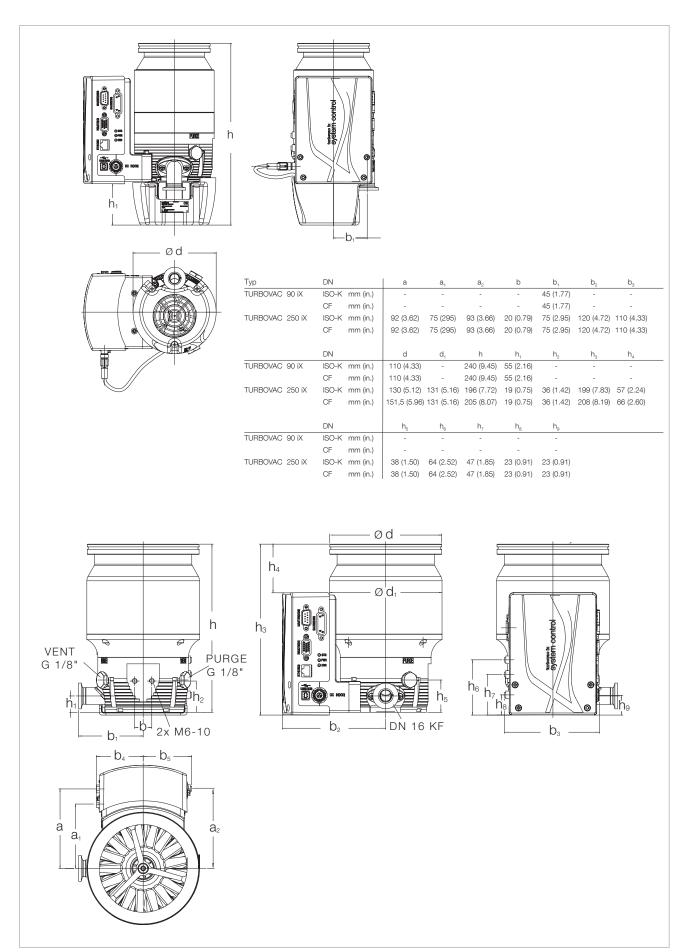
- Variant without Compound Stage
- increased gas throughput
- Increased tolerance against dust and particles
- Improved run-up time

Advantages to the User

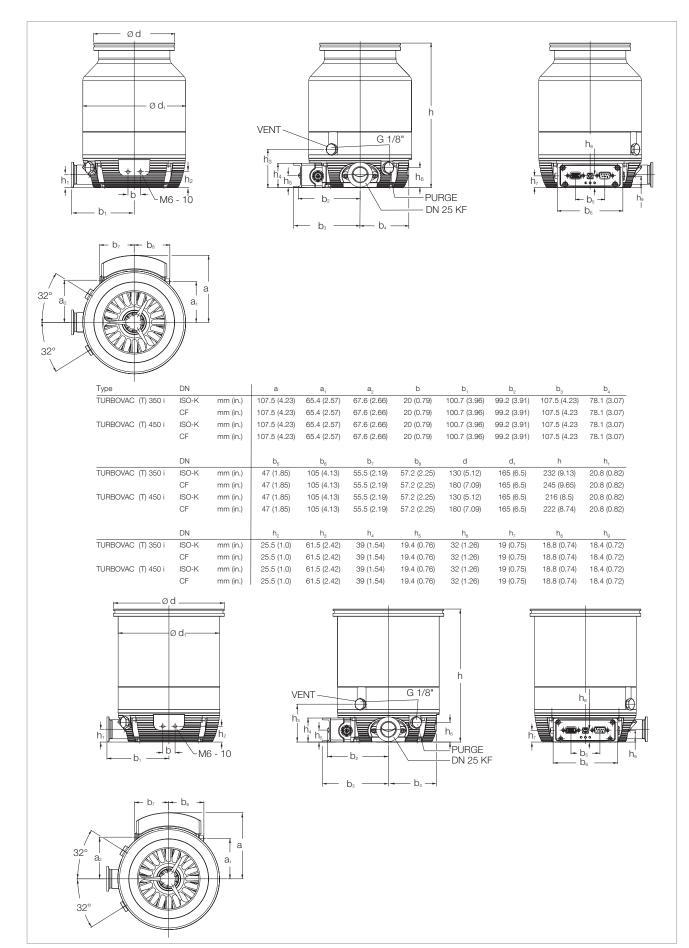
TURBOVAC i

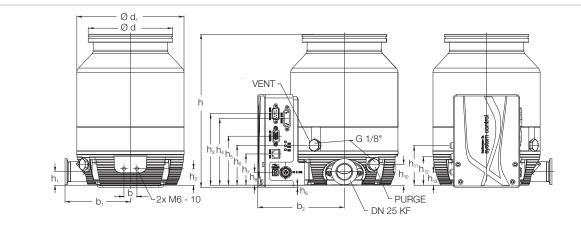

- Best performance and functionality for your money
- Maximum user flexibility for easy system integration, operation and control
- Highest productivity and system uptime at lowest CoO (Cost of Ownership)
- Improved pump-down time and target pressures
- Superior pumping performance for light gases
- Down-sizing of vacuum system in terms of costs and dimensions (use of small forevacuum pumps)

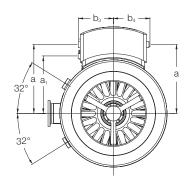
TURBOVAC iX


- Easy plug & play pump system control
- Avoid extra costs for separate pump system control units and cabling

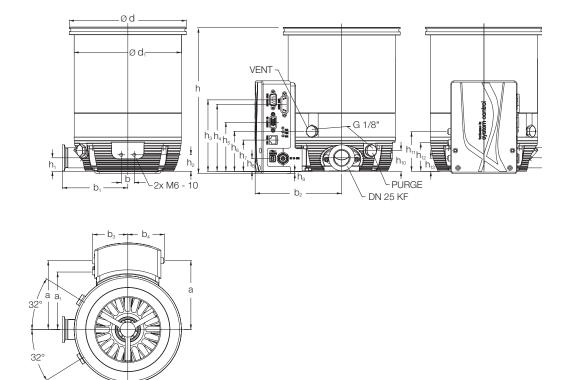
TURBOVAC T i, T iX


- Suitable for demanding process applications and high throughput operation
- Fast cycle operation and pump down possible

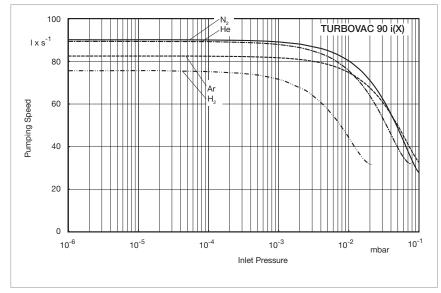

Dimensional drawing for the TURBOVAC pumps, 90 i top and 250 i bottom

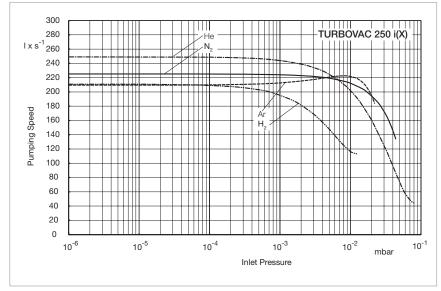


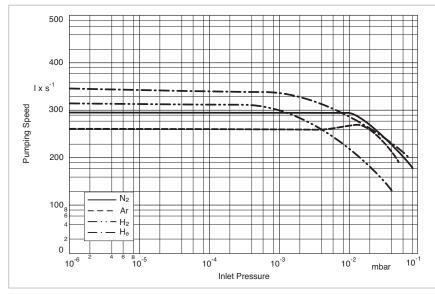
Dimensional drawing for the TURBOVAC pumps, 90 iX top and 250 iX bottom

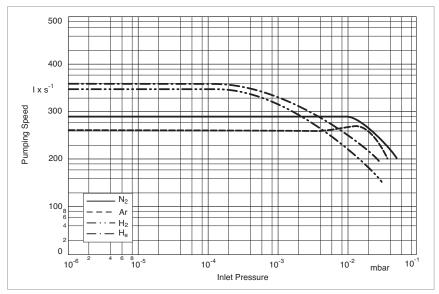


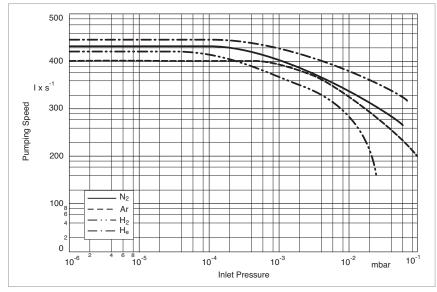
Dimensional drawing for the TURBOVAC (T) pumps, 350 i top and 450 i bottom

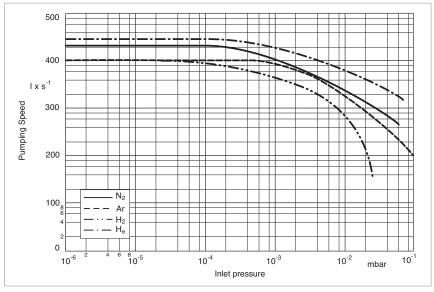



Туре	DN		а	a,	b	b,	b ₂	b3	b ₄	
TURBOVAC (T) 350 iX	ISO-K	mm (in.)	111 (4.37)	78 (3.07)	20 (0.79)	101 (3.98)	138 (5.43)	54 (2.13)	56 (2.2)	
	CF	mm (in.)	111 (4.37)	78 (3.07)	20 (0.79)	101 (3.98)	138 (5.43)	54 (2.13)	56 (2.2)	
TURBOVAC (T) 450 iX	ISO-K	mm (in.)	111 (4.37)	78 (3.07)	20 (0.79)	101 (3.98)	138 (5.43)	54 (2.13)	56 (2.2)	
	CF	mm (in.)	111 (4.37)	78 (3.07)	20 (0.79)	101 (3.98)	138 (5.43)	54 (2.13)	56 (2.2)	
	DN		d	d,	h	h,	h ₂	h ₃	h ₄	h₅
TURBOVAC (T) 350 iX	ISO-K	mm (in.)	130 (5.12)	165 (6.5)	235 (9.25)	21 (0.83)	26 (1.02)	110 (4.33)	103 (4.06)	76 (2.99)
	CF	mm (in.)	180 (7.09)	165 (6.5)	248 (9.76)	21 (0.83)	26 (1.02)	110 (4.33)	103 (4.06)	76 (2.99)
TURBOVAC (T) 450 iX	ISO-K	mm (in.)	130 (5.12)	165 (6.5)	219 (8.62)	21 (0.83)	26 (1.02)	110 (4.33)	103 (4.06)	76 (2.99)
	CF	mm (in.)	180 (7.09)	165 (6.5)	225 (8.86)	21 (0.83)	26 (1.02)	110 (4.33)	103 (4.06)	76 (2.99)
	DN		h _ε	h ₇	h _s	h ₉	h₁₀	h ₁₁	h ₁₂	h ₁₃
TURBOVAC (T) 350 iX	ISO-K	mm (in.)	62 (2.44)	48 (1.89)	20 (0.79)	3 (0.12)	32 (1.26)	64 (2.52)	47 (1.85)	23 (0.91)
	CF	mm (in.)	62 (2.44)	48 (1.89)	20 (0.79)	3 (0.12)	32 (1.26)	64 (2.52)	47 (1.85)	23 (0.91)
TURBOVAC (T) 450 iX	ISO-K	mm (in.)	62 (2.44)	48 (1.89)	20 (0.79)	3 (0.12)	32 (1.26)	64 (2.52)	47 (1.85)	23 (0.91)
	CF	mm (in.)	62 (2.44)	48 (1.89)	20 (0.79)	3 (0.12)	32 (1.26)	64 (2.52)	47 (1.85)	23 (0.91)


Dimensional drawing for the TURBOVAC (T) pumps, 350 iX top and 450 iX bottom


Pumping speed as a function of the inlet pressure for the TURBOVAC 90 i (DN 63 Flange)


Pumping speed as a function of the inlet pressure for the TURBOVAC 250 i


Pumping speed as a function of the inlet pressure for the TURBOVAC 350 i

Pumping speed as a function of the inlet pressure for the TURBOVAC $\,$ T 350 i

Pumping speed as a function of the inlet pressure for the TURBOVAC $\,\,450\,i$

Pumping speed as a function of the inlet pressure for the TURBOVAC $\,$ T 450 i

Technical Data				TURB	OVAC		
		90 i/iX	250 i/iX	350 i/iX	450 i/iX	T 350 i/iX	T 450 i/iX
High-vacuum connection	DN	63 ISO-K 63 CF	100 ISO-K 100 CF	100 ISO-K 100 CF	160 ISO-K 160 CF	100 ISO-K 100 CF	160 ISO-K 160 CF
Forevacuum connection	DN	16 ISO-KF	16 ISO-KF	25 ISO-KF	25 ISO-KF	25 ISO-KF	25 ISO-KF
Pumping speed							
N ₂	l/s	90	225	290	430	290	430
Ar	l/s	83	210	260	400	260	400
He	l/s	90	250	360	440	360	440
H ₂	l/s	78	210	350	420	320	400
Gas throughput							
N ₂	mbar x l/s	10	6	4.5	4.5	11.5	115
Ar	mbar x l/s	3	3	2	2	6	6
Не	mbar x l/s	11	6	8	8	20	20
H ₂	mbar x l/s	11	>10	8	8	20	20
Compression ratio							
N ₂		1 x 10 ¹¹	1 x 1011	1 x 10 ¹¹	1 x 10 ¹¹	1 x 10 ¹⁰	1 x 10 ¹⁰
Ar		1 x 10 ¹¹	1 x 10 ¹¹	1 x 10 ¹¹	1 x 10 ¹¹	1 x 10 ¹¹	1 x 10 ¹¹
Не		-	-	1 x 10 ⁸	1 x 10 ⁸	1 x 10 ⁶	1 x 10 ⁶
Η,		5 x 10 ⁷	2 x 10 ⁷	1 x 10 ⁶	1 x 10 ⁶	1 x 104	1 x 104
Ultimate pressure with 2-s oil-sealed rotary vane vacu	0						
ISO-K / CF flange	mbar			< 8 x 10 ⁻⁸ /	′ < 5 x 10 ⁻¹⁰		
	(Torr)			(< 6 x 10 ⁻⁸ / <			
Max. forevacuum pressure	. ,			· · · · · · · · · · · · · · · · · · ·	,		
N ₂	mbar (Torr)	14 (10.5)	14 (10.5)	10 (7.5)	10 (7.5)	0.5 (0.375)	0.5 (0.375)
Recommended forevacuur		(/	(/	- (-7	- (- /		
		D 2,5 E / D 4 B	D 2.5 E / D 4 B	D4B	D4B	D 16 B	D 16 B
	SCROLLVAC	SC 5 D	SC 5 D / 15 D		SC 5 D / 15 D	SC 15 D / 30 D	SC 15 D / 30 D
	DIVAC	1.4 HV3	3.8 HV3	3.8 HV3	3.8 HV3	-	-
Operating speed	min ⁻¹ (rpm)	72 000	72 000	60 000	60 000	60 000	60 000
Speed adjustment range	%	62 to 100	62 to 100	50 to 100	50 to 100	50 to 100	50 to 100
Run-up time, approx.	min	1.5	2	5.5	5.5	3.5	3.5
Ambient temperature			1	1	1	1	
during operation	°C			+5 to	+45		
	(°F)			(+41 to	o +113)		
during storage	°C				o -70		
	(°F)			(+5 to	o -94)		
Cooling							
standard				Conve	ection		
optional					water		
Cooling water connection				Plug connection			
alternatively				G 1/8" Scre	w-in thread		
Cooling water consumptio	n l/h	30 to 60	30 to 60	50 to 100	50 to 100	50 to 100	50 to 100
Permissible cooling water pr	essure bar(g)			3 t	0 6		
Permissible cooling water ter	mperature °C			+15 t	0 +35		
	(°F)			(+59 t	o +95)		
Noise level							
with convection cooling	g db(A)	< 41	< 41	< 44	< 44	< 44	< 44
with radial cooler	db(A)	< 44	< 44	< 47	< 47	< 47	< 47
with faular cooler	00000		< ++				

Additional Technical Data for

the Frequency Converte	er						
(i Version)		90 i	250 i	350 i	450 i	T 350 i	T 450 i
Technical Data for the integrated Drive Electror	nics						
Supply voltage	V DC			24/48	±10%		
Max. current consumption	А			10 at 2	4 V DC		
Max. power consumption	W			2	40		
Power consumption	W			0	20		
at ultimate pressure	IP				10		
Type of protection							
Interfaces					5, USB,		
				15-pin c	digital I/O		
Other interfaces				Upon	request		
Accessory connection				1 pcs. M 8 con	nector, 24 V DC	, ,	
Weight ISO-K / CF	kg	3.1 / 4.8	4 / 6.6	7.5 / 11.5	7.7 / 12.5	7.0 / 11.0	7.2 / 12.0
-	(lbs)	(6.8 / 10.6)	(8.8 / 14.5)	(16.5 / 25.4)	(17.0 / 27.6)	(15.4 / 14.3)	(15.9 / 26.5)

TURBOVAC

Additional Technical Date the Frequency Convert		TURBOVAC								
(iX-Version)		90 iX	250 iX	350 iX	450 iX	T 350 iX	T 450 iX			
Technical Data for the integrated Drive Elec and Vacuum System Co										
Supply voltage	V DC			24/48	±10%					
Max. current consumption	А			10 at 2	4 V DC					
Max. power consumption	w			2	40					
Power consumption at ultimate pressure	w			2	20					
Type of protection	IP			4	0					
Interfaces		ι	JSB+,15 pin Star	ndard, Anybus (ei	ther RS 485, RS	232, Profibus, .)			
Accessory connections				3 pcs. M 8 con	nector, 24 V DC					
Max. load for the 24 V DC ou	tput									
(cooler or valve supply)	V / W			24 / m	nax. 12					
Gauge head connection				15-way	/ Sub-D					
Weight ISO-K / CF	kg	3.6 / 5.3	4,5 / 7.1	8.0 / 12.0	8.2 / 13.0	7.5 / 11.5	7.7 / 12.5			
	(lbs)	(7.9 / 11.7)	(9.9 / 15.6)	(17.6 / 26.5)	(18.1 / 28.7)	(16.5 / 25.4)	(17.0 / 27.6)			

P	
FC Connecting cable	PS Mains cable
TURBOVAC 90 i, iX / 250 i, iX / (T) 350 i, iX / (T) 450 i, iX	TURBO.POWER integra (TURBO.CONTROL 300)

leybold

Ordering Information

TURBOVAC

		Wide	Range		Classic		
	90 i	250 i	350 i	450 i	T 350 i	T 450 i	
	Part No.						
TURBOVAC with integrated frequency converter, RS 485, USB+ and 15-Pin digital I/O interface DN 40 ISO-K	810011V1000	_	_	_	_	_	
DN 63 ISO-K	810031V1000		_	_	_	_	
DN 63 CF	810041V1000	_	_	_	_	_	
DN 100 ISO-K	_	820051V1000	830051V1000	_	830050V1000	_	
DN 100 CF	_	820061V1000	830061V1000	_	830060V1000	_	
DN 160 ISO-K	_	_	_	830071V1000	_	830070V1000	
DN 160 CF	_	_	_	830081V1000	_	830080V1000	
other interfaces			Upon r	equest			

	Wide Range				Classic	
	90 iX	250 iX	350 iX	450 iX	T 350 iX	T 450 iX
	Part No.	Part No.	Part No.	Part No.	Part No.	Part No.
TURBOVAC with integrated frequency converter, and vacuum system controller, RS 485, USB+ and 15-Pin digital I/O interface DN 63 ISO-K	810031V3300	_	_	_	_	_
DN 63 CF	810041V3300	_	_	_	_	_
DN 100 ISO-K	_	820051V3300	830051V3300	_	830050V3300	_
DN 100 CF	_	820061V3300	830061V3300	_	830060V3000	_
DN 160 ISO-K	_	_	_	830071V3300	_	830070V3300
DN 160 CF	_	_	_	830081V3300	_	830080V3300
other interfaces	Upon request					

Included in the Delivery of the Pump

High and forevacuum flanges are protective-capped

The flange mounting components and the inlet screen are not included in the delivery

Ordering Information

TURBOVAC (T)

90 i, iX / 250 i, iX / 350 i, iX / 450 i, iX

	90 I, IX / 230 I, IX / 330 I, IX / 430 I, IX
Mandatory Accessories	Part No.
Power supply TURBO.POWER integra, including 0.3 (1.1 ft) long cable	800100V0003
Mains cable, 3 m (10.5 ft) EU plug UK plug US plug 5-15P, 115 V	800102V0002 800102V0003 800102V1002
Cable pump – TURBO.POWER integra 1 m (3.5 ft) 3 m (10.5 ft) 5 m (17.5 ft)	800096V0100 800096V0300 800096V0500
Mounting kit TURBOVAC DN 63 ISO-K	800134V0010
DN 100 ISO-K	800134V0020
DN 160 ISO-K	800134V0030
DN 100 ISO-K to ISO-F	800134V0025
DN 160 ISO-K to ISO-F	800134V0035
DN 63 CF	800134V0011
DN 100 CF	800134V0021
DN 160 CF	800134V0031

Forevacuum pumps TRIVAC D 4 B and TRIVAC D 16 B see Catalog Part "Oil Sealed Vacuum Pumps"

Forevacuum pumps SCROLLVAC 7 plus to SCROLLVAC 18 plus and DIVAC 3.8 HV3 see Catalog Part "Dry Compressing Vacuum Pumps"

Ordering Information

TURBOVAC (T)

90 i, iX / 250 i, iX / 350 i, iX / 450 i, iX

	30 i, ix / 200 i, ix / 000 i, ix / 400 i, ix
Accessories, optional	P Part No.
Power supply, cable, other accessories	· · · · · · · · · · · · · · · · · · ·
24VDC display unit TURBO.CONTROL i	800100V0004
Plug-in power supply 24 V/DC – TURBO.CONTROL i	800110V0027
Standard cable for communication – TURBO.CONTROL i USB cable 2.0 Type A/B, 1.8 m (5.9 ft) RS485 cable, 5 m (16.4 ft)	800110V0108 800103V0029
RS485 cable, 1 m (3.3 ft)	800103V0027
Power supply and control unit TURBO.CONTROL 300	800100V0001
Cable pump – TURBO.CONTROL 300 1 m (3.3 ft) 3 m (10.5 ft) 5 m (16.4 ft	800092V0100 800092V0300 800092V0500
Extension cable - only in combination with connecting cable 1m (3.5 ft) 10 m (35 ft) 20 m (70 ft)	800092V1000 800092V2000
24/48 V DCIn plug TURBOVAC	800090V0000
USB-Kabel 2.0, Typ A/B, 1.8 m (5.9 ft) long	800110V0108
Y cable M 8	800110V0020
Relaybox for forevacuum pump, 1-phase, 10 A	800110V0030
Start stop switch	800110V0021
Cooling	
Air cooler TURBOVAC 90 i(X) radial axial	800136V0007 800136V0008
TURBOVAC 250 i(X) radial axial	800136V0009 800136V0008
TURBOVAC 350/450 i(X) radial	800136V0005
axial	800136V0006
Water cooling TURBOVAC i(X), connection thread G 1/8"	800135V0005
Water cooling TURBOVAC i(X), connection thread G 1/4" Venting and purge gas	800135V0006
Venting valve, 24 V DC, G 1/8"	800120V0012
Power failure venting valve, 24 V DC, G 1/8"	800120V0012
Purge gas valve, 24 V DC, G 1/8", 24 sccm	800120V0013
Purge gas throttle, 24 sccm	800120V0014
Air filter, G 1/8"	800110V0022
Heating	
Flange heater (needs mains cable, see above) DN 63 CF, 230 V	800137V0003
DN 63 CF, 115 V	800137V0004
DN 100 CF, 230 V	800137V0005
DN 100 CF, 115 V	800137V0006
DN 160 CF, 230 V	800137V0007
DN 160 CF, 115 V	800137V0008
Installation Vibration absorber	
DN 100 ISO-K	800131V1100
DN 160 ISO-K	500073
DN 100 CF	500071
DN 160 CF	500072
Centering ring with fine inlet screen, 0.8 mm (0.03") mesh DN 63 ISO-K/F	800133V0012
DN 100 ISO-K/F	800133V0022
DN 160 ISO-K/F	800133V0032
with coarse inlet screen, 3.2 mm (0.13") mesh DN 63 ISO-K/F	800133V0011
DN 100 ISO-K/F	800133V0021
DN 160 ISO-K/F Fina Inlat screen 0.8 mm (0.03") mach	800133V0031
Fine Inlet screen, 0.8 mm (0.03") mesh DN 63 CF	800132V0012
DN 100 CF	800132V0022
DN 160 CF Coarse inlet screen, 3.2 mm (0.13") mesh DN 63 CF	800132V0032
DN 100 CF	800132V0021
DN 160 CF	800132V0031

Special Turbomolecular Pumps

TURBOVAC i Multi Inlet Cartridge

Precision is key when it comes to analytical instruments.

Outfitted with two or more inlets, the innovative turbopumps with integrated drive electronics provide extraordinary pumping performance and are adaptable to the system requirements of each instrument.

In combination with our support for the whole vacuum system design, it will result in the best possible level of pump system integration you have ever experienced.

The TURBOVAC 350-400 i Multi Inlet line has been especially developed to meet the requirements of analytical instruments and features an extremely high level of flexibility, allowing you to choose the number, height and position of the multiple vacuum ports. The result: a pump that is perfectly fitted to your specific performance needs and installation requirements.

Additionally, we offer the support and experience in vacuum system design which opens a wide range of possibilities, from the adaptation of the pump housing to your vacuum chamber through to the design of a custom-built housing/chamber that meets your particular needs. Your benefit: optimum system integration of the pump(s) into your instrument and a reduced time to market.

Your Advantage

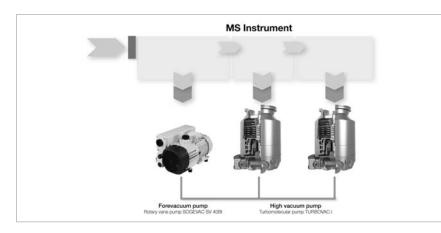
- Perfect integration of the pump(s) within your instrumentation
- Cutting of system costs
- Smaller size of the analytical system
- Reduction in the number of individual vacuum components
- Choice between cartridge and custom pump housing

In order to simplify installation, operation and control, all TURBOVAC i variants feature an integrated electronic drive with 24/48 V DC supply and a detachable operator interface with USB, RS 485 and digital I/O connections.

Performance

- Industry-leading pumping speed especially for light gases (up to 60 % higher than existing products)
- Optimized rotor diameter to provide maximum pumping performance
- > 40 l/s pumping speed at Interstage port 2

Flexibility


- Vacuum port design flexibility
 Rotatable fore-vacuum port
 - Multiple interstage ports
 - High level of flexibility in terms of height and position of vacuum ports
- Unique cartridge solutions for optimized system integration with fast and simple field replacement
- Special pump housing solutions adapted to your instrument
- Complete vacuum system design including your vacuum chamber
- Variable rotor and Holweck design to adapt the performance to your application

Installation, operation and control

- Integrated 24/48 V DC drive electronics to avoid expensive cabling
- Widest range of communication interfaces: USB, RS 485 and remote 15 pin digital I/O as standard options
- Highly efficient motor
- Thermal isolation by design for optimized cooling of bearing and improved pump lifetime
- Simply-supported shaft reduces vibration
- Maintenance free upper passive magnetic bearing
- Oil free, lifetime lubricated lower mechanical ceramic ball bearing, field-replaceable

Outstanding performance

Thanks to its variable rotor and drag stage design, our new Multi Inlet product line provides the highest performance for all mass spectrometer applications. With increased pumping speed levels especially for light gases which are up to 60% higher than those offered by other products currently on the market, it provides significant advantages for your instruments: lower pressures, improved detection sensitivity levels and higher sample throughput rates.

Superior reliability

The unique maintenance and oil free hybrid bearing system is characterized by its extreme reliability and durability – that's because we equipped it with an innovative lifetime lubrication system that never needs an oil change. The simply-supported shaft system results in a low vibration pump design which reduces noise, mechanical stress and negative impact on vibration sensitive applications. Optimized cooling of the bearings is ensured through thermal isolation and the highly efficient motor. To protect the bearings from critical gases or particles, all pumps are equipped with a purge port. As a consequence, not only pump lifetime is increased significantly, but also system uptime as well as productivity. In combination with low costs of ownership, the operation of your vacuum system will be more efficient than ever.

Advantages to the User

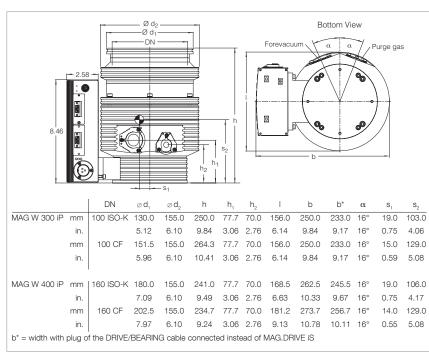
- High gas throughput
- High effective pumping speed
- High efficiency for analytical instruments
- High detection sensitivity
- High sample throughput
- Free of hydrocarbons
- Hybrid bearing suspension for low vibration levels
- Space and weight saving
- Low component count
- Favourable price-to-performance ratio
- Installation and user friendly
- Practically maintenance free

Typical Applications

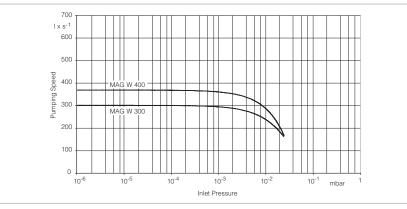
For example

- LC-MS (linking of a liquid chromatograph to a mass spectrometer)
- GC/MS (linking of a gas chromatograph to a mass spectrometer)
- TOF-MS (time-of-flight mass spectrometer)
- ICP-MS (inductively coupled plasma mass spectrometry)
- Helium leak detectors

Technical Features


- Dual Inlet (pumping down of two analysis chambers)
- Triple inlet (pumping down of three analysis chambers)
- High effective pumping speed HV stage up to 400 l/s Interstage IS 1 up to 300 l/s Interstage IS 2 up to 50 l/s
- Cartridge solutions (without pump housing) are available
- Compact vacuum system

Customized versions are available upon request


MAG INTEGRA – Magnetic Rotor Suspension with integrated Frequency Converter, with Compound Stage

TURBOVAC MAG W 300/400 iP

Dimensional drawing for the TURBOVAC MAG W 300/400 iP

Pumping speed for N₂ of the TURBOVAC MAG W 300/400 iP as a function of the inlet pressure

Typical Applications

- Gas analysis systems
- Particle accelerators
- Electron microscopes
- Research
- Coating systems

Technical Features

- Installation in any orientation
- DN 100 or 160 ISO-K and/or CF high vacuum connection
- DN 16 ISO-KF with clamped fore vacuum connection
- Purge gas/venting connection DN 16 ISO-KF with clamped connection (purge/vent)
- Water or air cooling optional
- 2 slots for industrial communications modules
 - Standard 9 pin 24 V SPS PLC-IO in Control Slot
 - RS 232 C in Service Slot
 - further interfaces can be fitted: Profibus, RS 485 C, DeviceNet, EtherNet IP, EtherCat

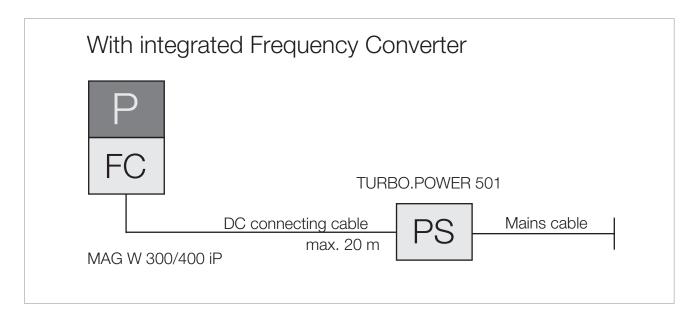
Advantages to the User

- Highest pumping speed from the smallest possible size
- New standard regarding maintenance-free systems
- Suitability for vibration sensitive applications in the area of analytical engineering, thin-film technology, electron microscopes, research, development among others
- Flexibility due to the modular concept; the converter is optionally also available by way of a bench top unit

TURBOVAC MAG

	W 30	0 iP	W 40	D iP
Inlet flange DN	100 ISO-K	100 CF	160 ISO-K	160 CF
Pumping speed				
N ₂ I/s	300	300	365	365
Ar I/s	260	260	330	330
He I/s	260	260	280	280
H ₂ I/s	190	190	200	200
Operating speed min ⁻¹	58 800	58 800	58 800	58 800
Compression ratio				
N ₂	1.0 x 10 ¹⁰	1.0 x 10 ¹⁰	1.0 x 10 ¹⁰	1.0 x 10 ¹⁰
H ₂	3.2 x 10 ³	3.2 x 10 ³	3.2 x 10 ³	3.2 x 10 ³
Не	9.2 x 10 ⁴	9.2 x 10 ⁴	9.2 x 104	9.2 x 104
Ultimate pressure mbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
(Torr)	(< 0.75 x 10⁻ଃ)	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10⁻ଃ)	(< 0.75 x 10⁻¹º)
Max. degassing temperature °C (°F)	_	80 (176)	_	80 (176)
Max. foreline pressure for N_2 mbar (Torr)	8 (6)	8 (6)	8 (6)	8 (6)
Recommended backing pump	TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E
	TRIVAC D 8 B	TRIVAC D 8 B	TRIVAC D 8 B	TRIVAC D 8 B
Run-up time min	< 5	< 5	< 5	< 5
Foreline flange (clamped) DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF
Purge / vent port (clamped) DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF
Water cooling connection (optional) G	1/8"	1/8"	1/8"	1/8"
Weight, approx. kg (lbs)	12 (26)	12 (26)	12 (26)	12 (26)

Technical Data

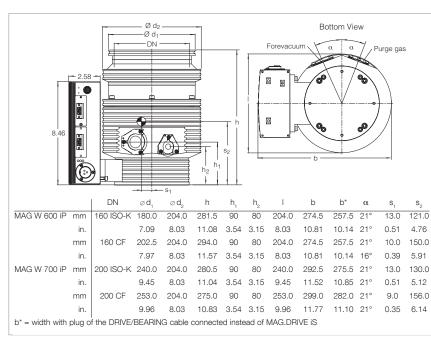

Integrated Frequency Converter TURBO.DRIVE iS

Power supply V	48	48	48	48
Ripple %	< 2	< 2	< 2	< 2
Power consumption				
maximum W	400	400	400	400
at ultimate pressure W	259	259	259	259
DC current consumption, max. A	7.5 to 9.3	7.5 to 9.3	7.5 to 9.3	7.5 to 9.3
DC power supply voltage range V	43 to 53	43 to 53	43 to 53	43 to 53
Length of the DC connection cable, max.				
at 3 x 1.5 mm ² m (ft)	5 (17.5)	5 (17.5)	5 (17.5)	5 (17.5)
at 3 x 2.5 mm ² m (ft)	20 (70.0)	20 (70.0)	20 (70.0)	20 (70.0)
Contact rating for the relays, max.	32 V; 0.5 A			
Permissible ambient temperature				
during operation °C	+10 to +40	+10 to +40	+10 to +40	+10 to +40
(°F)	(+50 to +104)	(+50 to +104)	(+50 to +104)	(+50 to +104)
during storage °C	0 to +60	0 to +60	0 to +60	0 to +60
(°F)	(0 to +140)	(0 to +140)	(0 to +140)	(0 to +140)
Relative humidity of the air,				
non-condensing %	5 to 85	5 to 85	5 to 85	5 to 85
Protection class IP	30	30	30	30
Overvoltage category	Π	II	11	II
Pollution category	2	2	2	2

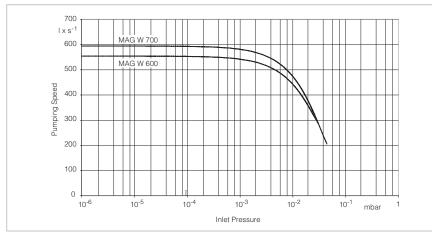
leybold

TURBOVAC MAG W 300/400 iP

) Part No.	
410300V0505 410300V0506	
410400V0505 410400V0506	
410300V5221	
410300V2001 410300V2003 410300V2005 410300V2010 410300V2020	_
800102V0002 800102V1002	_
140 000 140 002 112 55 112 56	-
	410300V0506 410400V0505 410400V0506 410400V0506 410300V5221 410300V2001 410300V2001 410300V2003 410300V2003 410300V20002 800102V0002 800102V1002 800102V1002 1140 000 140 002 112 55


TURBOVAC MAG W 300/400 iP

Accessories, optional	Part No.
Inlet screen	
DN 100 ISO-K	
coarse (3.2 x 3.2 mm (0.13 x 0.13 in.))	800132V0101
fine (1.6 x 1.6 mm (0.06 x 0.06 in.))	800132V0102
DN 100 CF	
coarse (3.2 x 3.2 mm (0.13 x 0.13 in.))	200 91 514
fine (1.6 x 1.6 mm (0.06 x 0.06 in.))	E 200 17 195
DN 160 ISO-K	E 200 00 307
DN 160 CF	E 200 17 247
Flange heater	
100 CF, 230 V, 50 Hz	854 27
100 CF, 115 V, 60 Hz	854 28
160 CF, 230 V, 50 Hz	854 37
160 CF, 115 V, 60 Hz	854 38
Water cooling unit	410300V0101
Air cooling unit	410300V0102
START/STOP switch for manual operation of the turbomolecular pump	152 48
DC plug	800 001 694
Solenoid venting valve, normally closed	
24 V DC, DN 16 ISO-KF	800120V0011
Power failure venting valve, normally open	800120V0021
Included in the Delivery of the Pump	
Flanges for forevacuum, venting and purge gas are blank-flanged	
Centering ring with FPM sealing ring and a clamping yoke	


MAG INTEGRA – Magnetic Rotor Suspension with integrated Frequency Converter, with Compound Stage

TURBOVAC MAG W 600/700 iP

Dimensional drawing for the TURBOVAC MAG W 600/700 iP

Pumping speed for N₂ of the TURBOVAC MAG W 600/700 iP as a function of the inlet pressure

Typical Applications

- Gas analysis systems
- Particle accelerators
- Electron microscopes
- Research
- Coating systems

Technical Features

- Installation in any orientation
- DN 160 or 200 ISO-K and/or CF high vacuum connection
- DN 25 ISO-KF with clamped forevacuum connection
- Purge gas/venting connection DN 16 ISO-KF with clamped connection (purge/vent)
- Water or air cooling optional
- 2 slots for industrial communications modules
 - Standard 9 pin 24 V SPS PLC-IO in Control Slot
 - RS 232 C in Service Slot
 - further interfaces can be fitted: Profibus, RS 485 C, DeviceNet, EtherNet IP, EtherCat

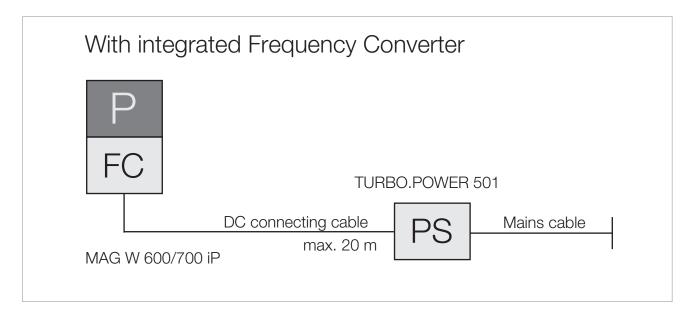
Advantages to the User

- Highest pumping speed from the smallest possible size
- New standard regarding maintenance-free systems
- Suitability for vibration sensitive applications in the area of analytical engineering, thin-film technology, electron microscopes, research, development among others
- Flexibility due to the modular concept; the converter is optionally also available by way of a bench top unit

TURBOVAC MAG

	W 600 iP		W 700 iP		
Inlet flange DN	160 ISO-K	160 CF	200 ISO-K	200 CF	
Pumping speed					
N ₂ I/s	550	550	590	590	
Ar I/s	520	520	540	540	
He I/s	570	570	600	600	
H ₂ I/s	410	410	430	430	
Operating speed min ⁻¹	48 000	48 000	48 000	48 000	
Compression ratio N_2 H_2 He	1.6 x 10 ¹⁰ 3.4 x 10 ⁴ 1.7 x 10 ⁶	1.6 x 10 ¹⁰ 3.4 x 10 ⁴ 1.7 x 10 ⁶	1.6 x 10 ¹⁰ 3.4 x 10 ⁴ 1.7 x 10 ⁶	1.6 x 10 ¹⁰ 3.4 x 10 ⁴ 1.7 x 10 ⁶	
Ultimate pressure mbar (Torr)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)	
Max. degassing temperature °C (°F)	_	80 (176)	_	80 (176)	
Max. foreline pressure for N ₂ mbar (Torr)	6.0 (4.5)	6.0 (4.5)	6.0 (4.5)	6.0 (4.5)	
Recommended backing pump	TRIVAC D 2,5 E TRIVAC D 8 B				
Run-up time min	< 6	< 6	< 6	< 6	
Foreline flange (clamped) DN	25 ISO-KF	25 ISO-KF	25 ISO-KF	25 ISO-KF	
Purge / vent port (clamped) DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF	
Water cooling connection (optional) G	1/8"	1/8"	1/8"	1/8"	
Weight, approx. kg (lbs)	17 (37.5)	17 (37.5)	17 (37.5)	17 (37.5)	

Technical Data

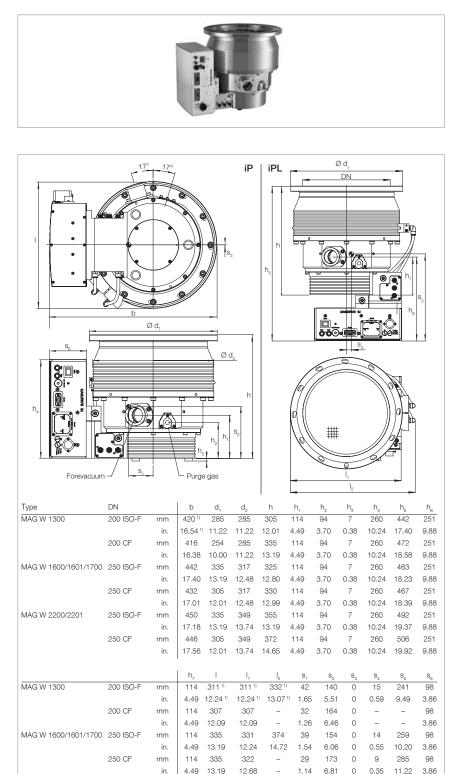

Integrated Frequency Converter TURBO.DRIVE iS

Power supply V	48	48	48	48
Ripple %	< 2	< 2	< 2	< 2
Power consumption				
maximum W	400	400	400	400
at ultimate pressure W	259	259	259	259
DC current consumption, max. A	7.5 to 9.3	7.5 to 9.3	7.5 to 9.3	7.5 to 9.3
DC power supply voltage range V	43 to 53	43 to 53	43 to 53	43 to 53
Length of the DC connection cable, max.				
at 3 x 1.5 mm ² m (ft)	5 (17.5)	5 (17.5)	5 (17.5)	5 (17.5)
at 3 x 2.5 mm ² m (ft)	20 (70.0)	20 (70.0)	20 (70.0)	20 (70.0)
Contact rating for the relays, max.	32 V; 0.5 A	32 V; 0.5 A	32 V; 0.5 A	32 V; 0.5 A
Permissible ambient temperature				
during operation °C	+10 to +40	+10 to +40	+10 to +40	+10 to +40
(°F)	(+50 to +104)	(+50 to +104)	(+50 to +104)	(+50 to +104
during storage °C	0 to +60	0 to +60	0 to +60	0 to +60
(°F)	(0 to +140)	(0 to +140)	(0 to +140)	(0 to +140)
Relative humidity of the air,				
non-condensing %	5 to 85	5 to 85	5 to 85	5 to 85
Protection class IP	30	30	30	30
Overvoltage category	Π	II	II	II
Pollution category	2	2	2	2

leybold

TURBOVAC MAG W 600/700 iP

TURBOVAC MAG W 600 iP P P	FC Part No.	
DN 160 ISO-K DN 160 CF	410600V0505 410600V0506	
TURBOVAC MAG W 700 iP P P	FC	
DN 200 ISO-K DN 200 CF	410700V0505 410700V0506	
Mandatory Accessories	FC	
Power supply TURBO.POWER 501	410300V5221	
DC cable frequency converter – power supply		_
1 m (3.5 ft)	410300V2001	
3 m (10.5 ft)	410300V2003	
5 m (17.5 ft)	410300V2005	
10 m (35.0 ft)	410300V2010	
20 m (70.0 ft)	410300V2020	
Mains cable, 3 m (10.5 ft)		
with EURO plug	800102V0002	
with US plug 5-15 P	800102V1002	
Forevacuum pump		1
TRIVAC D 2,5 E		
220 – 240 V, 50 Hz; 230 V, 60 Hz; Schuko plug, EURO version	140 000	
110 – 120 V, 50/60 Hz; NEMA plug, US version	140 002	
TRIVAC D 8 B		
1 phase motor; 230 V, 50/60 Hz	112 55	
3 phase motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz	112 56	



TURBOVAC MAG W 600/700 iP

Accessories, optional	Ρ	Part No.
Inlet screen		
DN 160 ISO-K		E 200 00 307
DN 160 CF		E 200 17 247
DN 200 ISO-K		200 91 639
DN 200 CF		400 001 515
Flange heater		
160 CF, 230 V, 50 Hz		854 37
160 CF, 115 V, 60 Hz		854 38
Water cooling unit		410600V0101
Air cooling unit		410600V0102
START/STOP switch for manual operation of the turbomolecular pump		152 48
DC plug		800 001 694
Solenoid venting valve, normally closed		
24 V DC, DN 16 ISO-KF		800120V0011
Power failure venting valve, normally open		800120V0021
Included in the Delivery of the Pump	Ρ	
Flanges for forevacuum, venting and purge gas are blank-flanged		
Centering ring with FPM sealing ring and a clamping yoke		

MAG INTEGRA – Magnetic Rotor Suspension with integrated Frequency Converter, with and without Compound Stage

TURBOVAC MAG W 1300 iP(L) to 2201 iP(L)

Typical Applications

- PVD coatings systems
- Coating of architectural glass
- Optical coatings
- LC displays
- Flat panels
- Research
- Analytical systems

Technical Features

- Installation in any orientation
- DN 200 and/or 250 in ISO-F and/or CF high vacuum connection
- DN 40 KF forevacuum connection
- Purge gas/venting connection
 DN 16 KF with clamped connection
 (purge/vent)
- Water cooling
- Protection class IP 54
- RS 232 C in Service Slot
- 1 slot for industrial communications
 modules
 - Standard ProfiBus
 - further interfaces can be fitted:
 RS 485 C, 9 pin 24 V PLC,
 DeviceNet, EtherNet IP, EtherCat

Advantages to the User

- Highest pumping speed and gas throughput from a very small size
- Rugged and reliable operation in industrial applications
- Sets new benchmarks for maintenance-free systems
- Suited for vibration sensitive applications in the areas of analytical, thin-film, electron microscopy, research and development among others.
- Flexibility through the modular concept; the converter is either attached to the side or under the pump

¹⁾ 4 mm (0.16 in.) for cooling coil

Dimensional drawing for the MAG INTEGRA, dimensions in mm

114 343

4.49 13.50

114 339

4.49 13.35

mm

in

mm

340

13.39

340

13.39

392 34

15.43

1.34

26 187 0 8 302

1.02

165 0 12

6.50

7.36

272 98

10.71 3.86

98

3.86

0.47

0

0 0.32 11.89

250 ISO-F

250 CF

MAG W 2200/2201

TURBOVAC MAG W

Technical Data			IUNDUVA			
	1300 iP(L)	1600 iP(L) Booster	1601 iP(L) Booster	1700 iP(L)	2200 iP(L)	2201 iP(L)
Inlet flange DN	200 ISO-F 200 CF	250 ISO-F	250 ISO-F	250 ISO-F 250 CF	250 ISO-F 250 CF	250 ISO-F
Pumping speed I/s	1100	1600	1600	1610	2100	2100
Ar I/s He I/s H ₂ I/s	1050 1220 1130	1470 1770 1570	1470 1770 1570	1480 1710 1500	1900 2050 1750	1900 2050 1750
Operating speed standby speed adjustable from min ⁻¹ to nominal speed min ⁻¹	37 800	33 000	33 000	33 000	30 600 13 800 (230 Hz)	30 000
Max. compression ratiop N_2 Ar He at 1 sccm H_2 at 1 sccm	> 10 ⁸ > 10 ⁸ 2 x 10 ⁵ 8 x 10 ³	> 10 ⁷ > 10 ⁷ 6 x 10 ⁴ 1 x 10 ³	> 10 ⁷ > 10 ⁷ 3 x 10 ³ 5 x 10 ²	> 10 ⁸ > 10 ⁸ 2 x 10 ⁵ 4 x 10 ³	> 10 ⁸ > 10 ⁸ 5 x 10 ⁴ 5 x 10 ³	> 10 ⁸ > 10 ⁸ 5 x 10 ³ 5 x 10 ²
$\begin{array}{lll} \mbox{Max. gas throughput} & & \\ \mbox{N}_2 & \mbox{briefly, e.g. during pumpdown} & & \\ \mbox{mbar x l/s} & & \\ \mbox{N}_2 & \mbox{in continuous operation} & & \mbox{mbar x l/s} & \\ \end{array}$	30 20	60 30	60 40	30 20	30 17	50 36
Ar briefly, e.g. during pumpdown mbar x l/s Ar in continuous operation mbar x l/s	20 15	30 20	30 25	20 15	20 12	30 24
Ultimate pressure ISO-F flange mbar (Torr) CF flange mbar (Torr)	< 10 ⁻⁸ (< 7.5 x 10 ⁻⁹) < 10 ⁻¹⁰ (< 7.5 x 10 ⁻¹¹)		< 10 ^{.8} (< 7.5 x 10 ^{.9}) -		< 10 ⁻⁸ < 10 ⁻¹⁰ (< 7.5 x 10 ⁻¹¹)	< 10 ^{⋅s} (< 7.5 x 10 ^{⋅s} −
Max. degassing temperature °C (°F)		1	80 (176)	1	
Max. foreline pressure N ₂ mbar (Torr) Ar mbar (Torr)	4.0 (3.00) 0.6 (0.45)	1.0 (0.75) 1.0 (0.75)	1.0 (0.75) 1.0 (0.75)	4.0 (3.00) 0.6 (0.45)	2.5 (1.9) 2.5 (1.9)	1.2 (0.91) 1.2 (0.91)
Recommended backing pump		TRI	VAC B or dry c	ompressing pu	mps	
Run-up time min	< 5	< 7	< 7	< 7	< 10	< 10
Foreline flange DN			40	KF		
Purge / vent port (clamped) DN	16 KF					
Water cooling connection G	1/8"					
Weight, approx. kg (lbs)	40 (88)	45 (99)	45 (99)	45 (99)	50 (110)	50 (110)
Noise level acc. ISO 3744 dB(A			<	41	~	
Vibration level at high vacuum flange at max. speed			0.	01		

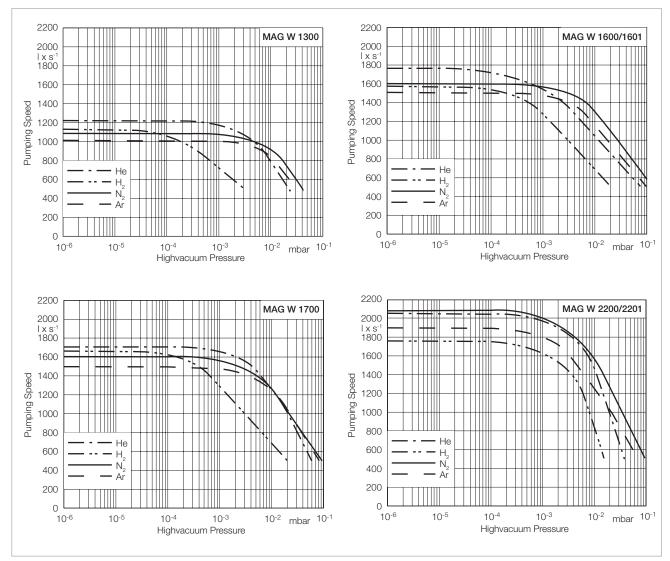
Technical Data

Integrated Frequency Converter

		MAG.DRIVE iM
Power supply Mains frequency	V Hz	200 – 240 ±10% 50 / 60
Power consumption maximum at ultimate pressure	w w	750 150
Contact rating for the relays, max		32 V, 0.5 A
Permissible ambient temperature during operation during storage	°C (°F) °C (°F)	+10 to +45 (+50 to +113) -10 to +60 (+14 to +140)
Relative humidity of the air, non-condensing	%	5 to 85
Protection class	IP	54
Overvoltage category Pollution category		 2

TURBOVAC MAG W1300/1600/1601/ 1700/2200/2201 iP(L)

TURBOVAC MAG W 1300 P FC PS with Integrated Frequency Converter and Purge Gas Connection	Part No.	
MAG W 1300 iP, DN 200 ISO-F, Profibus MAG W 1300 iP, DN 200 ISO-F, 24 V SPS interface MAG W 1300 iP, DN 200 CF, Profibus MAG W 1300 iP, DN 200 CF, 24 V SPS interface MAG W 1300 iPL, DN 200 ISO-F, Profibus MAG W 1300 iPL, DN 200 ISO-F, 24 V SPS interface MAG W 1300 iPL, DN 200 CF, Profibus MAG W 1300 iPL, DN 200 CF, Profibus	411300V0504 411300V0514 411300V0506 411300V0516 411300V0704 411300V0714 411300V0706 411300V0716	
TURBOVAC MAG W 1600 Booster P FC PS with Integrated Frequency Converter and Purge Gas Connection	Part No.	
MAG W 1600 iP Booster, DN 250 ISO-F, Profibus MAG W 1600 iP Booster, DN 250 ISO-F, 24 V SPS interface MAG W 1600 iPL Booster, DN 250 ISO-F, Profibus MAG W 1600 iPL Booster, DN 250 ISO-F, 24 V SPS interface	411600V0504 411600V0514 411600V0704 411600V0714	
TURBOVAC MAG 1601 Booster P FC PS with Integrated Frequency Converter and Purge Gas Connection	Part No.	
MAG 1601 iP Booster, DN 250 ISO-F, Profibus MAG 1601 iP Booster, DN 250 ISO-F, 24 V SPS interface MAG 1601 iPL Booster, DN 250 ISO-F, Profibus MAG 1601 iPL Booster, DN 250 ISO-F, 24 V SPS interface	411600V2504 411600V2514 411600V2704 411600V2714	
TURBOVAC MAG W 1700 P FC PS with Integrated Frequency Converter and Purge Gas Connection	Part No.	
MAG W 1700 iP, DN 250 ISO-F, Profibus MAG W 1700 iP, DN 250 ISO-F, 24 V SPS interface MAG W 1700 iP, DN 250 CF, Profibus MAG W 1700 iP, DN 250 CF, 24 V SPS interface MAG W 1700 iPL, DN 250 ISO-F, Profibus MAG W 1700 iPL, DN 250 ISO-F, 24 V SPS interface MAG W 1700 iPL, DN 250 CF, 24 V SPS interface MAG W 1700 iPL, DN 250 CF, 24 V SPS interface	411700V0504 411700V0514 411700V0506 411700V0516 411700V0704 411700V0714 411700V0706 411700V0716	
TURBOVAC MAG W 2200 P FC PS with Integrated Frequency Converter and Purge Gas Connection	Part No.	
MAG W 2200 iP, DN 250 ISO-F, Profibus MAG W 2200 iP, DN 250 ISO-F, 24 V SPS interface MAG W 2200 iP, DN 250 CF, Profibus MAG W 2200 iP, DN 250 CF, 24 V SPS interface MAG W 2200 iPL, DN 250 ISO-F, Profibus MAG W 2200 iPL, DN 250 ISO-F, 24 V SPS interface MAG W 2200 iPL, DN 250 CF, Profibus MAG W 2200 iPL, DN 250 CF, 24 V SPS interface	412200V0504 412200V0514 412200V0506 412200V0516 412200V0704 412200V0714 412200V0706 412200V0716	
TURBOVAC MAG 2201 Booster P FC PS with Integrated Frequency Converter and Purge Gas Connection	Part No.	
MAG 2201 iP, DN 250 ISO-F, Profibus MAG 2201 iP, DN 250 ISO-F, 24 V SPS interface MAG 2201 iPL, DN 250 ISO-F, Profibus MAG 2201 iPL, DN 250 ISO-F, 24 V SPS interface	412200V2504 412200V2514 412200V2704 412200V2714	

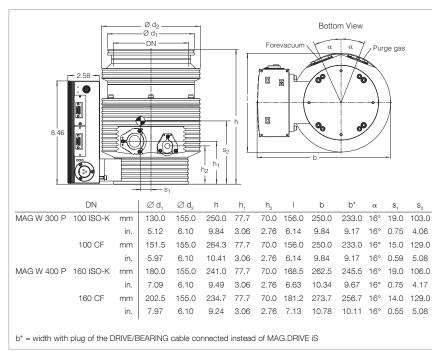

Other interfaces upon request

With integrated Frequency Converter and Power Supply P FC PS Mains cable Mains cable MAG W 1300 iP(L), MAG W 1600/1601 iP(L) Booster, MAG W 1700 iP(L), MAG W 1700 iP(L), MAG W 2200/2201 iP(L)

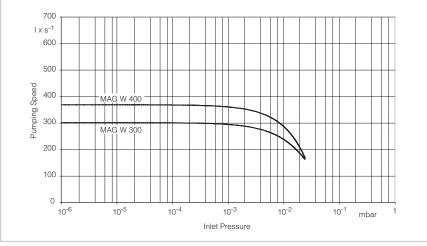
Ordering Information

TURBOVAC MAG W1300/1600/1601/ 1700/2200/2201 iP(L)

	1700/2200/2201 iP(L)
Р	Part No.
	400153V0012 400153V0010
	268 44 268 45 887 02 887 08
	400153V0016
	839 47 839 48
	839 07 839 07
P FC PS	
	411310V03 411320V03
	200 07 901
	upon request
	121 33 800152V0010 411300V01
	411300V02
	E 200 04 558 E 200 04 557
Р	


Pumping speed curves of the MAG $\,$ W 1300, W 1600, W 1700 and W 2200 $\,$

Notes


MAG INTEGRA – Magnetic Rotor Suspension with separate Frequency Converter, with Compound Stage

TURBOVAC MAG W 300/400 P

Dimensional drawing for the TURBOVAC MAG W 300/400 P

Typical Applications

- Gas analysis systems
- Particle accelerators
- Electron microscopes
- Research
- Coating systems

Technical Features

- Installation in any orientation
- DN 100 or 160 ISO-K and/or CF high vacuum connection
- DN 16 ISO-KF with clamped forevacuum connection
- Purge gas/venting connection DN 16 ISO-KF with clamped connection (purge/vent)
- Water or air cooling optional

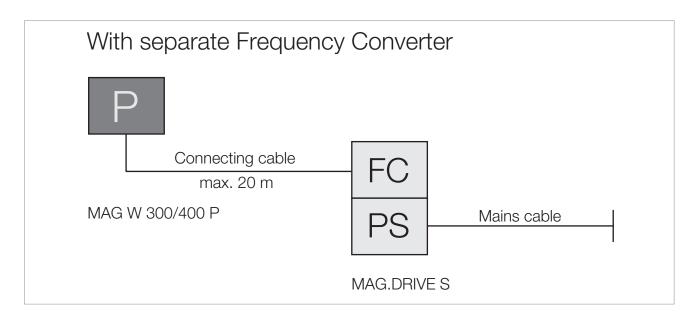
Advantages to the User

- Highest pumping speed from the smallest possible size
- New standard regarding maintenance-free systems
- Suitability for vibration sensitive applications in the area of analytical engineering, thin-film technology, electron microscopes, research, development among others
- Flexibility due to the modular concept; alternatively the pump is available also with an integrated frequency converter

Pumping speed for N₂ of the TURBOVAC MAG W 300/400 P as a function of the inlet pressure

TURBOVAC MAG

		W 300 P		W 400 P	
Inlet flange	DN	100 ISO-K	100 CF	160 ISO-K	160 CF
Pumping speed					
N ₂	l/s	300	300	365	365
Ar	l/s	260	260	330	330
Не	l/s	260	260	280	280
H ₂	l/s	190	190	200	200
Operating speed m	nin-1	58 800	58 800	58 800	58 800
Compression ratio					
N ₂		1.0 x 10 ¹⁰	1.0 x 10 ¹⁰	1.0 x 10 ¹⁰	1.0 x 10 ¹⁰
H ₂		3.2 x 10 ³	3.2 x 10 ³	3.2 x 10 ³	3.2 x 10 ³
Не		9.2 x 10 ⁴	9.2 x 104	9.2 x 104	9.2 x 104
Ultimate pressure m	ıbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
т)	Torr)	(< 0.75 x 10 ⁻⁸)	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10 ⁻⁸)	(< 0.75 x 10 ⁻¹⁰)
Max. degassing temperature °C	(°F)	_	80 (176)	_	80 (176)
Max. foreline pressure for N ₂ mbar (T	Torr)	8 (6)	8 (6)	8 (6)	8 (6)
Recommended backing pump		TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E
		TRIVAC D8B	TRIVAC D 8 B	TRIVAC D 8 B	TRIVAC D 8 B
Run-up time	min	< 5	< 5	< 5	< 5
Foreline flange (clamped)	DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF
Purge / vent port (clamped)	DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF
Water cooling connection (optional)	G	1/8"	1/8"	1/8"	1/8"
Weight, approx. kg (lbs)	12 (26)	12 (26)	12 (26)	12 (26)

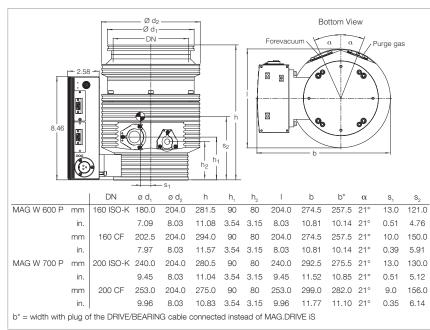

Technical Data

MAG.DRIVE S

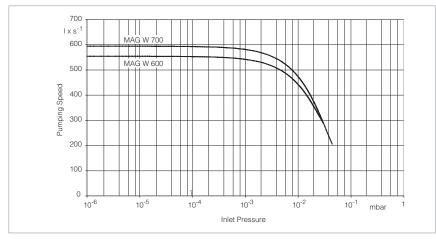
Voltage range	V	100 - 240, ±10 %
Nominal frequency	Hz	50 / 60
Power consumption		
stand-by	W	100
maximum	W	400
Max. motor voltage	V	48
Max. pump current	А	6
Fuses F1, F2 5 x 20 mm		10 A fast blow
		high breaking capacity 250 V
System fuse		L or G characteristic
Max. frequency	Hz	0 to 2000
Load capability, relay output X1	V / A	32 / 0,5
Temperature		
during operation	°C (°F)	0 to +45 (+32 to +113)
during storage	°C (°F)	-10 to +60 (+14 to +140)
Relative humidity of the air	%	95 (non-condensing)

TURBOVAC MAG W 300/400 P

TURBOVAC MAG W 300 P with separate Frequency Converter and Compound Stage	Р	Part No.	
DN 100 ISO-K DN 100 CF		410300V0005 410300V0006	Æ
TURBOVAC MAG W 400 P with separate Frequency Converter and Compound Stage	Ρ		
DN 160 ISO-K DN 160 CF		410400V0005 410400V0006	
Mandatory Accessories	PFC		
Electronic frequency converter MAG.DRIVE S with display		410300V0212	_
Connecting cable DRIVE/BEARING (connection between pump and MAG.DRIVE S) 3.0 m (10.5 ft) 5.0 m (17.5 ft) 10.0 m (35.0 ft) 20.0 m (70.0 ft)		410300V4003 410300V4005 410300V4010 410300V4020	
Mains cable 3.0 m (10.5 ft) EURO plug US plug 5-15 P 2.0 m (7.5 ft) US plug 115 V AC		800102V0002 800102V1002 992 76 513	_
Forevacuum pump TRIVAC D 2,5 E 220 – 240 V, 50 Hz; 230 V, 60 Hz; Schuko plug, EURO version 110 – 120 V, 50/60 Hz; NEMA plug, US version		140 000 140 002	
TRIVAC D 8 B 1 phase motor; 230 V, 50/60 Hz 3 phase motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz		112 55 112 56	


TURBOVAC MAG W 300/400 P

Accessories, optional	Ρ	Part No.	
Inlet screen			
DN 100 ISO-K			
coarse (3.2 x 3.2 mm (0.13 x 0.13 in.)		800132V0101	
fine (1.6 x 1.6 mm (0.06 x 0.06 in.))		800132V0102	
DN 100 CF			
coarse (3.2 x 3.2 mm (0.13 x 0.13 in.))		200 91 514	
fine (1.6 x 1.6 mm (0.06 x 0.06 in.))		E 200 17 195	
DN 160 ISO-K		E 200 00 307	
DN 160 CF		E 200 17 247	
Flange heater			
100 CF, 230 V, 50 Hz		854 27	
100 CF, 115 V, 60 Hz		854 28	
160 CF, 230 V, 50 Hz		854 37	
160 CF, 115 V, 60 Hz		854 38	
Water cooling unit		410300V0101	
Air cooling unit		410300V0102	
Solenoid venting valve, normally closed			
24 V DC, DN 16 ISO-KF		800120V0011	
Power failure venting valve, normally open		800120V0021	
Included in the Delivery of the Pump			
Flanges for forevacuum, venting and purge gas are blank-flanged			
Centering ring with FPM sealing ring and a clamping yoke			


MAG INTEGRA – Magnetic Rotor Suspension with separate Frequency Converter, with Compound Stage

TURBOVAC MAG W 600/700 P

Dimensional drawing for the TURBOVAC MAG W 600/700 P

Pumping speed for $\rm N_{_2}$ of the TURBOVAC MAG $\,$ W 600/700 P as a function of the inlet pressure

Typical Applications

- Gas analysis systems
- Particle accelerators
- Electron microscopes
- Research
- Coating systems

Technical Features

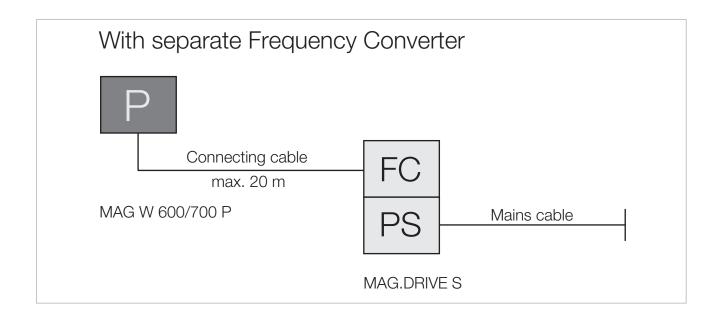
- Installation in any orientation
- DN 160 or 200 ISO-K and/or CF high vacuum connection
- DN 25 ISO-KF with clamped forevacuum connection
- Purge gas/venting connection DN 16 ISO-KF with clamped connection (purge/vent)
- Water or air cooling optional

Advantages to the User

- Highest pumping speed from the smallest possible size
- New standard regarding maintenance-free systems
- Suitability for vibration sensitive applications in the area of analytical engineering, thin-film technology, electron microscopes, research, development among others
- Flexibility due to the modular concept; alternatively the pump is available also with an integrated frequency converter

TURBOVAC MAG

	W 600 P		W 700 P	
Inlet flange DN	160 ISO-K	160 CF	200 ISO-K	200 CF
Pumping speed				
N ₂ I/s	550	550	590	590
Ar I/s	520	520	540	540
He I/s	570	570	600	600
H ₂ I/s	410	410	430	430
Operating speed min ⁻¹	48 000	48 000	48 000	48 000
Compression ratio				
N ₂	1.6 x 10 ¹⁰	1.6 x 10 ¹⁰	1.6 x 10 ¹⁰	1.6 x 10 ¹⁰
H ₂	3.4 x 10 ⁴	3.4 x 10 ⁴	3.4 x 10 ⁴	3.4 x 10 ⁴
Не	1.7 x 10 ⁶	1.7 x 10 ⁶	1.7 x 10 ⁶	1.7 x 10 ⁶
Ultimate pressure mbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
(Torr)	(< 0.75 x 10 ⁻⁸)	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10⁻ଃ)	(< 0.75 x 10 ⁻¹⁰)
Max. degassing temperature °C (°F)	_	80 (176)	_	80 (176)
Max. foreline pressure for N_2 mbar (Torr)	6.0 (4.5)	6.0 (4.5)	6.0 (4.5)	6.0 (4.5)
Recommended backing pump	TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E
	TRIVAC D 8 B	TRIVAC D 8 B	TRIVAC D 8 B	TRIVAC D8B
Run-up time min	< 6	< 6	< 6	< 6
Foreline flange (clamped) DN	25 ISO-KF	25 ISO-KF	25 ISO-KF	25 ISO-KF
Purge / vent port (clamped) DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF
Water cooling connection (optional) G	1/8"	1/8"	1/8"	1/8"
Weight, approx. kg (lbs)	17 (37.5)	17 (37.5)	17 (37.5)	17 (37.5)


Technical Data

MAG.DRIVE S

Voltage range	v	100 - 240, ±10 %
Nominal frequency	Hz	50 / 60
Power consumption		
stand-by	W	100
maximum	W	400
Max. motor voltage	V	48
Max. pump current	А	6
Fuses F1, F2 5 x 20 mm		10 A fast blow
		high breaking capacity 250 V
System fuse		L or G characteristic
Max. frequency	Hz	0 to 2000
Load capability, relay output X1	V / A	32 / 0.5
Temperature		
during operation	°C (°F)	0 to +45 (+32 to +113)
during storage	°C (°F)	-10 to +60 (+14 to +140)
Relative humidity of the air	%	95 (non-condensing)

TURBOVAC MAG W 600/700 P

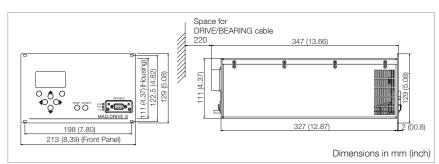
TURBOVAC MAG W 600 P with separate Frequency Converter and Compound Stage	Ρ	Part No.	
DN 160 ISO-K DN 160 CF		410600V0005 410600V0006	
TURBOVAC MAG W 700 P with separate Frequency Converter and Compound Stage	Ρ		
DN 200 ISO-K DN 200 CF		410700V0005 410700V0006	
Mandatory Accessories	PFC		
Electronic frequency converter MAG.DRIVE S with display		410300V0212	
Connecting cable DRIVE/BEARING (connection between pump and MAG.DRIVE S) 3.0 m (10.5 ft) 5.0 m (17.5 ft) 10.0 m (35.0 ft) 20.0 m (70.0 ft)		410300V4003 410300V4005 410300V4010 410300V4020	
Mains cable 3.0 m (10.5 ft) EURO plug US plug 5-15 P 2.0 m (7.5 ft) US plug 115 V AC		800102V0002 800102V1002 992 76 513	_
Forevacuum pump TRIVAC D 2,5 E 220 – 240 V, 50 Hz; 230 V, 60 Hz; Schuko plug, EURO version <u>110 – 120 V, 50/60 Hz; NEMA plug, US version</u> TRIVAC D 8 B 1 phase motor; 230 V, 50/60 Hz 3 phase motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz		140 000 140 002 112 55 112 56	-

TURBOVAC MAG W 600/700 P

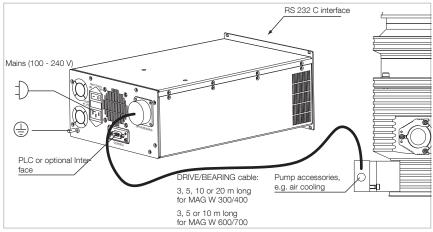
Accessories, optional	P Part No).	
Inlet screen			
DN 160 ISO-K	E 200 00	307	
DN 160 CF	E 200 17	247	
DN 200 ISO-K	200 91 6	39	
DN 200 CF	400 001	515	
Flange heater			
160 CF, 230 V, 50 Hz	854 37	,	
160 CF, 115 V, 60 Hz	854 38	854 38	
Water cooling unit	410600V0	101	
Air cooling unit	410600V0	102	
Solenoid venting valve, normally closed			
24 V DC, DN 16 ISO-KF	800120V0	011	
Power failure venting valve, normally open	800120V0	021	
Included in the Delivery of the Pump	Р		
Flanges for forevacuum, venting and purge gas are blank-flanged			
Centering ring with FPM sealing ring and a clamping yoke			

Accessories

Electronic Frequency Converters for Pumps with Magnetic Rotor Suspension MAG.DRIVE S



MAG.DRIVE S with display


Advantages to the User

- Operation of turbomolecular pumps with magnetically levitated rotors: MAG W 300/400 P and MAG W 600/700 P
- Easy operation through the controls
- Communication to host computer of the customer via serial interface and conventional interface possible
- Setting of speed and other functions
- Warning in case the pump is running out of specification
- Storing of all parameters in the pump's memory
- Small size and low weight
- Integrated fan

- 2 slots for industrial communications modules
 - rear side:
 - Standard 9 pin 24 V SPS PLC-IO in Control Slot
 - front side:
 - RS 232 C in Service Slot
 - further interfaces can be fitted:
 Ethernet, Profibus, DeviceNet,
 RS 485 C

Dimensional drawing for the MAG.DRIVE S

Connection schematic MAG.DRIVE S

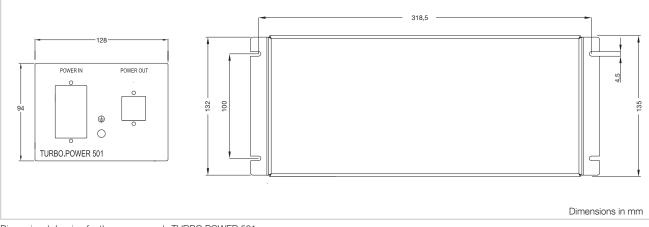
MAG.DRIVE S

100 – 240, ±10%
F0 / 60
50 / 60
100
400
48
6
10 A fast blow
h breaking capacity 250 V
L or G characteristic
0 to 2000
32 / 0,5
0 to +45 (+32 to +113)
10 to +60 (+14 to +140)
95 (non-condensing)
65 (14.35)

Ordering Information

MAG.DRIVE S

	Part No.
Electronic frequency converter MAG.DRIVE S with display	410300V0212
Connecting cable DRIVE/BEARING	
(connection between pump	
and MAG.DRIVE S)	
3.0 m (10.5 ft)	410300V4003
5.0 m (17.5 ft)	410300V4005
10.0 m (35.0 ft) ¹⁾	410300V4010
20.0 m (70.0 ft) ¹⁾	410300V4020
Mains cable	
3.0 m (10.5 ft)	
EURO plug	800102V0002
US plug 5-15 P	800102V1002
2.0 m (7.5 ft)	
US plug 115 V AC	992 76 513


 $^{\scriptscriptstyle 1)}\,$ Suited for operating the MAG $\,$ W 300/400 only $\,$

Power Supply TURBO.POWER 501

for TURBOVAC MAG W 300/400/600/700 iP

TURBO.POWER 501 (Fig.similar)

Dimensional drawing for the power supply TURBO.POWER 501

Technical Features

- For supplying 48 V DC power to the MAG W 300/400/600/700 iP
- Bench top unit or for cabinet mounting

Power Supply TURBO.POWER 501

Power supply (POWER IN)	V	100 – 240, ±10%
Nominal frequency	Hz	50 / 60
Power consumption		
maximum	VA	650
at ultimate pressure operation		
of the pump	VA	450
DC voltage range		
POWER OUT	V DC	48
max.	Α	10
Length of the DC connection cable,	max.	
at 3 x 1.5 mm ²	m (ft)	5 (17.5)
at 3 x 2.5 mm ²	m (ft)	20 (70.0)
Ambient temperature		
during operation	°C (°F)	+10 to +40 (+50 to +104)
during storage	°C (°F)	-10 to -70 (+14 to -94)
Relative humidity of the air	%	5 to 85 (non-condensing)
Protection class	IP	30
Overvoltage category		II
Pollution category		2
Weight, approx.	kg (lbs)	4.0 (8.8)

Ordering Information

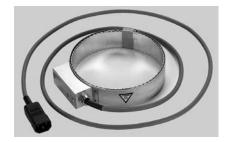
Power Supply

TURBO.POWER 501

	Part No.
Power supply TURBO.POWER 500	410300V5221
DC cable (connection between	
TURBO.POWER 500 and MAG.DRIVE iS)	
1.0 m(3.5 ft)	410300V2001
3.0 m (10.5 ft)	410300V2003
5.0 m (17.5 ft)	410300V2005
10.0 m (35.0 ft)	410300V2010
20.0 m (70.0 ft)	410300V2020
Mains cable	
3.0 m (10.5 ft)	
EURO plug	800102V0002
US plug 5-15 P	800102V1002
2.0 m (7.5 ft)	
US plug 115 V AC	992 76 513

Vibration Absorber

Vibration absorbers are used to inhibit the propagation of vibrations from the turbomolecular pump to highly sensitive instruments like electron beam microscopes, micro-balances or analytical instruments.


Ordering Information

Vibration Absorber

	Part No.
66 mm (2.60 in.) long	800131V0063
81 mm (3.19 in.) long	500 070
84 mm (3.31 in.) long	800131V0100
100 mm (4.09 in.) long	500 071
84 mm (3.31 in.) long	500 073
104 mm (4.09 in.) long	500 072
	81 mm (3.19 in.) long 84 mm (3.31 in.) long 100 mm (4.09 in.) long 84 mm (3.31 in.) long

Flange Heater for CF High Vacuum Flanges

Most TURBOVAC pumps can be baked out in order to improve the ultimate pressure attained in the UHV range. Degassing of the turbomolecular pump will only be useful when simultaneously baking out the vacuum chamber.

Rated power consumption of the flange heater		
DN 63 CF, DN 100 CF	W	100
DN 160 CF	W	150
Voltage	V AC	230 or 115
Cable length	mm	1600
Max. temperature	°C	100

Ordering Information

Flange Heater

Flange Heater

	Part No.	Part No.
Flange heater	230 V	115 V
DN 63 CF	800137V0003	800137V0004
DN 100 CF	800137V0005	800137V0006
DN 160 CF	800137V0007	800137V0008

Fine Filter

A fine filter integrated in the centering ring protects the pump against particles and dust on the high vacuum side.

Ordering Information

Connection flange of the fine filter DN 40 ISO-KF DN 63 ISO-K DN 100 ISO-K

Solenoid Venting Valve

Technical Data Ventir		Venting Valve
Drive voltage	V DC	24
Power consumption	w	4
Connecting flange	DN	16 ISO-KF
Weight, approx.	kg (lbs)	0.3 (0.66)
Ordering Information		Venting Valve

Fine Filter Part No.

883 98

887 20 887 21

Ordering information	venting valve	
	Part No.	
Solenoid venting valve, normally closed	800120V0011	

Power Failure Venting Valve

Technical Data		Power Failure Venting Valve
Drive voltage	V DC	24
Power consumption	W	4
Connecting flange	DN	16 ISO-KF
Weight, approx.	kg (lbs)	0.3 (0.66)
Ordering Information		Power Failure Venting Valve

Ordering Information

Fower	Failure	venting	valve

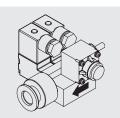
	Part No.
Power failure venting valve, normally open	800120V0021

Power Failure Venting Valve, Electromagnetically Actuated

DN 10 ISO-KF	65,8
	27

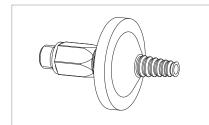
Dimensional drawing for the electromagnetically astuated power failure venting valve

Technical Data	Power Failure Venting Valve
Technical data	See Catalog "Valves", para. "Special Valves"
Ordering Information	Power Failure Venting Valve
	Part No.
Power failure venting valve DN 10 ISO-KF, electromagnetically actuated	
24 V DC	174 46
	174 26


Purge Gas and Venting Valve

Technical Data		Purge Gas and Venting Valve
Connecting flange	DN	10 ISO-KF
Weight, approx.	kg (lbs)	0.7 (1.55)
Ordering Information		Purge Gas and Venting Valve
		Part No.

Purge gas and venting valve, 230 V	
0.2 mbar x l/s (12 sccm)	855 19
0.4 mbar x l/s (24 sccm)	855 29


Purge Gas and Venting Valve

Technical Data		Purge Gas and Venting Valve
Connecting flange		
Inlet		1/4" tube
Outlet		pump specific or DN 16 ISO-KF
Purge gas pressure, abs.	bar	1.5 to 6,0
Weight, approx.	kg (lbs)	0.5 (1.1)
Ordering Information	I	Purge Gas and Venting Valve
		Part No.
Purge gas and venting valve, 24 V DC		
0.6 mbar x l/s		121 33

Further 0.6 mbar x l/s valves upon request

Gas Filter to G 1/4" for Purge Gas and Venting Valve

Technical Data	Gas Filter
Gasfilter	
including fitting G 1/4" and 2 gaskets	
Ordering Information	Gas Filter
	Part No.
Gas filter to G 1/4"	
for seal gas and venting valve	800110V0012
Replacement filter for gas filter to G 1/4"	E 200 18 515
for seal gas and venting valve	

Accessories for Serial Interfaces RS 232 C and RS 485 C

Through these accessories many control, monitoring and information capabilities can be implemented in connection with the electronic frequency converters and turbomolecular pumps. All turbomolecular pumps or electronic frequency converters are supported.

PC Software LEYASSIST

Software for PC-based communication, control and monitoring of turbomolecular pumps via USB, RS 485 or RS 232 interface with automatic pump detection.

Functions

- Display of vacuum system status
- Configuring the accessory functions of the TURBOVAC i / iX
- Reading/writing of parameters
- Data logging
- Alarm/warning message logging

Ordering Information

PC Software LEYASSIST

	Part No.
PC software LEYASSIST	230439V01

Interface Adaptor for Frequency Converter with RS 232 C/RS 485 C Interface

Ordering Information

Interface Adaptor RS 232 C/RS 485 C

	Part No.
Adaptor RS 232 C/RS 485 C mains connection 230 V, 50 Hz, EURO plug	800110V0101
Adaptor USB/RS 232 C for connection of RS 232 C to USB (PC), including CD with drivers and manual	800110V0103

Miscellaneous

Services for Mechanically Suspended Turbomolecular Pumps

Complete Refurbishing at the Service Centre

Complete refurbishing at the service centre includes the following:

Complete disassembly, cleaning, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Complete Refurbishing with Decontamination at the Service Centre

Complete refurbishing with decontamination at the service centre includes the following: Complete disassembly, cleaning and decontamination, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Ordering Information	Complete Refurbishing at the Service Centre	Complete Refurbishing with Decontamination at the Service Centre
	Part No.	Part No.
or pump		
TURBOVAC 35 / 50D	AS 2165	AS 2165 D
TURBOVAC 50	AS 2133	AS 2133 D
TURBOVAC SL 80	LAS 2368	LAS 2368 D
TURBOVAC TW 70 H	AS 2368	AS 2368 D
TURBOVAC 151	AS 2134	AS 2134 D
TURBOVAC TW 250 S	AS 2168	AS 2168 D
TURBOVAC SL 300	LAS 2369	LAS 2369 D
TURBOVAC TW 300	AS 2369	AS 2369 D
TURBOVAC 361	AS 2135	AS 2135 D
TURBOVAC 600 / 1000	AS 2136	AS 2136 D
TURBOVAC TW 701 / 690	AS 2330	AS 2330 D
TURBOVAC 1100	AS 2137	AS 2137 D

Services for Magnetically Levitated Turbomolecular Pumps

Complete Refurbishing at the Service Centre

Complete refurbishing at the service centre includes the following:

Complete disassembly, cleaning, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Complete Refurbishing with Decontamination at the Service Centre

Complete refurbishing with decontamination at the service centre includes the following: Complete disassembly, cleaning and decontamination, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Ordering Information	Complete Refurbishing at the Service Centre	Complete Refurbishing with Decontamination at the Service Centre
	Part No.	Part No.
For pump		
MAG W 300 / 400	AS 2300	AS 2300 D
MAG W 600 / 700	AS 2600	AS 2600 D
MAG W 1300 iP (L) – 2201 iP (L)	AS 2700	AS 2700 D
MAG (W) 1600 / 2000	AS 2164 ¹⁾	AS 2164 D ¹
MAG (W) 830 / 1300 / 1500	AS 2370 ¹⁾	AS 2370 D ¹⁾
MAG 900 / 1000 / 1200	AS 2160 ¹⁾	AS 2160 D 1)
MAG 2200	AS 2200 ¹⁾	AS 2200 D 1)
MAG 2800 / 3200	AS 2800 ¹⁾	AS 2800 D 1)

Notes

The listed services include the costs for material and working hours for standard pumps. Services for pump variants upon request.

If additional spare parts are needed for repairs, then these are invoiced separately according to a cost estimate.

¹⁾ Including rotor replacement